Advertisement

Journal of Central South University

, Volume 26, Issue 6, pp 1592–1606 | Cite as

Gas-liquid mass transfer of carbon dioxide capture by magnesium hydroxide slurry in a bubble column reactor

  • Peng-fei Xie (谢鹏飞)
  • Li-qing Li (李立清)Email author
  • Zhi-cheng He (何志成)
  • Chang-qing Su (苏长青)
Article
  • 2 Downloads

Abstract

Magnesium hydroxide (Mg(OH)2) has been considered as a potential solvent for C02 removal of coal-fired power plant and biomass gas. The chemistry action and mass to transfer mechanism of C02-H20-Mg(OH)2 system in a slurry bubble column reactor was described, and a reliable computational model was developed. The overall mass transfer coëfficiënt and surface area per unit volume were obtained using experimental approach and simulation with software assistance. The results show that the mass transfer process of C02 absorbed by Mg(OH)2 slurry is mainly liquid-controlled, and slurry concentration and temperature are main contributory factors of volumetric mass transfer coëfficiënt and liquid side mass transfer coefficient. High concentration of C02 has an adverse effect on its absorption because it leads to the fast deposition of MgC03-3H20 crystals on the surfaces of unreacted Mg(OH)2 particles, reducing the utilization ratio of magnesium hydroxide. Meanwhile, high CO32 ion concentration limits the dissolution of MgC03 to absorb C02 continually. Concentration of 0.05 mol/L Mg(OH)2, 15% vol C02 gas and operation temperature at 35 °C are recommended for this C02 capture system

Keywords

mass transfer CO2 capture magnesium hydroxide bubble column 

鼓泡反应器中氢氧化镁浆液脱碳的气液传质研究

摘要

氢氧化镁被认为是燃煤电厂和生物质气脱碳的潜在溶剂。本文描述了浆态床鼓泡反应器中CO2-H2O-Mg(OH)2 体系的化学作用和传质机理,建立了可靠的计算模型。利用实验方法和软件辅助仿真,得到了总传质系数和单位体积表面积。结果表明:Mg(OH)2 浆体吸收CO2 的传质过程主要是液膜控制过程,其中浆液浓度和反应温度是影响气泡塔反应器体积传质系数和液相传质系数的主要因素。高浓度的二氧化碳对其吸收有不利影响,因其导致MgCO3·3H2O 晶体快速沉积在未反应的Mg(OH)2颗粒表面,降低了氢氧化镁的利用率。同时,高CO32–离子浓度限制了MgCO3 的溶解,使其不能持续吸收CO2。建议二氧化碳捕集系统的反应条件为氢氧化镁溶液浓度0.05 mol/L,二氧化碳体积浓度15%,反应温度35 °C。

关键词

传质过程 CO2 捕集 氢氧化镁 鼓泡塔 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SKREIBERG A, SKREIBERG O, SANDQUIST J, SORUM L. TGA and macro-TGA characterisation of biomass fuels and foei mixtures [J]. Fuel, 2011, 90(6): 2182–2197.Google Scholar
  2. [2]
    HANAOKA T, INOUE S, UNO S, OGI T, MINOWA T. Effect of woody biomass components on air-steam gasification [J] Biomass & Bioenergy, 2005, 28(1): 69–76.Google Scholar
  3. [3]
    RUBIN E S, CHEN C, RAO A B. Cost and performance of fossil foei power plants with C02 capture and storage [J]. Energy Policy, 2007, 35(9): 4444–4454.CrossRefGoogle Scholar
  4. [4]
    ABU-ZAHRA M R M, SCHNEIDERS L H J, NIEDERER J P M, FERON P H M, VERSTEEG G F. CO2 capture from power plants Part I. A parametric study of the technical performance based on monoethanolamine [J]. International Journal of Greenhouse Gas Control, 2007, 1(1): 240–249.CrossRefGoogle Scholar
  5. [5]
    CHENG L, LI T, KEENER T C, LEE J Y. A mass transfer model of absorption of carbon dioxide in a bubble column reactor by using magnesium hydroxide slurry [J]. International Journal of Greenhouse Gas Control, 2013, 17: 240–249.CrossRefGoogle Scholar
  6. [6]
    HUANG Hou-ping, CHANG S G, DORCHAK T. Method to regenerate ammonia for the capture of carbon dioxide [J]. Energy and Fuels, 2002, 16: 904–910.CrossRefGoogle Scholar
  7. [7]
    VALENTI G, BONALUMI D, MACCHI E. A parametric investigation of the chilled ammonia process from energy and economic perspectives [J]. Fuel, 2012, 101: 74–83.CrossRefGoogle Scholar
  8. [8]
    YAN Li-yun, LU Xiao-feng, WANG Quan-hai, KANG Yin-hu, XU Jie, CHEN Ye. Research on sulfur recovery from the byproducts of magnesia wet flue gas desulfurization [J]. Applied Thermal Engineering, 2014, 65(1, 2): 487–494.CrossRefGoogle Scholar
  9. [9]
    KRISHNA R, van BATEN J M. Mass transfer in bubble columns [J]. Catalysis Today, 2003, 79: 67–75.CrossRefGoogle Scholar
  10. [10]
    ZHAO Bin, WANG Jin-fu, YANG Wei-guo, JIN Yong. Gas-liquid mass transfer in slurry bubble systems: I. Mathematical modeling based on a single bubble mechanism [J]. Chemical Engineering Journal, 2003, 96(1-3).: 23–27.CrossRefGoogle Scholar
  11. [11]
    CHEN Pao-chi, HUANG Chen-huai, SU Ting, CHEN H, YANG Ming-wei, TSAO J. Optimum conditions for the capture of carbon dioxide with a bubble-column scrubber [J]. International Journal of Greenhouse Gas Control, 2015, 35: 47–55.CrossRefGoogle Scholar
  12. [12]
    PASHAEI H, GHAEMI A, NASIRI M. Experimental investigation of CO2 removal using Piperazine solution in a stirrer bubble column [J]. International Journal of Greenhouse Gas Control, 2017, 63: 226–240.CrossRefGoogle Scholar
  13. [13]
    YANG Wei-guo, WANG Jin-fu, ZHAO Bin, JIN Yong. Gas-liquid mass transfer in slurry bubble systems: II. Verification and simulation of the model based on the single bubble mechanism [J]. Chemical Engineering Journal, 2003, 96: 29–35.CrossRefGoogle Scholar
  14. [14]
    AZBEL D. Two phase flows in chemical engineering [M]. Cambridge: Cambridge University Press, 2009: 174–178.Google Scholar
  15. [15]
    JAKOBSEN H A, LINDBORG H, DORAO C A. Modeling of bubble column reactors: Progress and limitations [J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5107–5151.CrossRefGoogle Scholar
  16. [16]
    ALVES S S, MAIA C I, VASCONCELOS J M T, SERRALHEIRO A J. Bubble size in aerated stirred tanks [J]. Chemical Engineering Journal, 2002, 89(1-3).: 109–117.CrossRefGoogle Scholar
  17. [17]
    KULKARNI A A, JOSHI J B. Bubble formation and bubble rise velocity in gas-liquid systems: A review [J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873–5931.CrossRefGoogle Scholar
  18. [18]
    AKITA K, YOSHIDA F. Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns [J]. Industrial & Engineering Chemistry Process Design and Development, 2002, 13: 84–91.CrossRefGoogle Scholar
  19. [19]
    MARTIN M, MONTES F J, GALAN M A. Bubbling process in stirred tank reactors I: Agitator effect on bubble size, formation and rising [J]. Chemical Engineering Science, 2008, 63(12): 3212–3222.CrossRefGoogle Scholar
  20. [20]
    BOYER C, DUQUENNE A M, WILD G. Measuring techniques in gas-liquid and gas-liquid-solid reactors [J]. Chemical Engineering Science, 2002, 57(16): 3185–3215.CrossRefGoogle Scholar
  21. [21]
    GRUND G, SCHUMPE A, DECKWER W D. Gas-liquid mass transfer in a bubble column with organic liquids [J]. Chemical Engineering Science, 1992, 47(13, 14): 3509–3516.CrossRefGoogle Scholar
  22. [22]
    GADDIS E S, VOGELPOHL A. Bubble formation in quiescent liquids under constant flow conditions [J]. Chemical Engineering Science, 1986, 41(1): 97–105.CrossRefGoogle Scholar
  23. [23]
    AKITA K, YOSHIDA F. Gas holdup and volumetric mass transfer coefficient in bubble columns [J]. Industrial & Engineering Chemistry Process Design and Development, 1973, 12(1): 76–80.CrossRefGoogle Scholar
  24. [24]
    YANG G Q, DU B, FAN L S. Bubble formation and dynamics in gas-liquid-solid fluidization: A review [J]. Chemical Engineering Science, 2007, 62(1, 2): 2–27.CrossRefGoogle Scholar
  25. [25]
    MENDELSON H D. The prediction of bubble terminal velocities from wave theory [J]. AICHE Journal, 1967, 13(2): 250–253.CrossRefGoogle Scholar
  26. [26]
    JIN Hai-bo, YANG Suo-he, HE Guang-xiang, LIU De-lin, TONG Ze-min, ZHU Jian-hua. Gas-liquid mass transfer characteristics in a gas-liquid-solid bubble column under elevated pressure and temperature [J]. Chinese Journal of Chemical Engineering, 2014, 22(9): 955–961.CrossRefGoogle Scholar
  27. [27]
    DECKWER W D, BURCKHART R, ZOLL G Mixing and mass transfer in tall bubble columns [J]. Chemical Engineering Science, 1974, 29(11): 2177–2188.CrossRefGoogle Scholar
  28. [28]
    SUH I S, SCHUMPE A, DECKWER W D, KULICKE W M. Gas-liquid mass transfer in the bubble column with viscoelastic liquid [J]. Canadian Journal of Chemical Engineering, 1991, 69(2): 506–512.CrossRefGoogle Scholar
  29. [29]
    XIAO Y, LOW B T, HOSSEINI S S, CHUNG T S, PAUL D R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review [J]. Progress in Polymer Science, 2009, 34(6): 561–580.CrossRefGoogle Scholar
  30. [30]
    KRAAKMAN N J R, ROCHA-RIOS J, LOOSDRECHT M C M. Review of mass transfer aspects for biological gas treatment [J]. Applied Microbiology and Biotechnology, 2011, 91: 873–886.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Energy Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations