Journal of Central South University

, Volume 26, Issue 6, pp 1573–1581 | Cite as

Corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding in alkaline solution

  • Kamran AminiEmail author
  • Farhad Gharavi


This study was done to evaluate the nugget zone (NZ) corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding (FSLW) in a solution of 0.015 mol/L borax (pH 9.3). To this end, dissimilar copper/ brass plates were welded with two dissimilar heat inputs (low and high) during the welding procedure. The high and low heat inputs were conducted with 710 r/min, 16 mm/min and 450 r/min, 25 mm/min, respectively. Using open circuit potential (OCP) measurements, electrochemical impedance spectroscopy (EIS) and Tafel polarization tests, the electrochemical behavior of the specimens in borate buffer solution was assessed. With the help of scanning electron microscope (SEM), the morphology of welded specimen surfaces was examined after immersion in the test solution. According to the results, the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input. The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals. Furthermore, an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior.

Key words

friction stir welding copper brass alloy corrosion behavior alkaline solution dissimilar joint 



本研究旨在研究0.015 mol/L 硼砂溶液(pH 9.3)中铜/黄铜异种搅拌摩擦焊(FSLW)接头的点焊熔 核区(NZ)的腐蚀行为。在焊接过程中,采用高热和低热两种热输入异种焊接铜/黄铜板,高热和低热输 入分别为710 r/min,16 mm/min 和450 r/min,25 mm/min。通过开路电位(OCP)测量、电化学阻抗光 谱(EIS)和Tafel 极化实验对硼酸盐缓冲溶液中试样的电化学行为进行评估。用扫描电子显微镜对试样 表面形貌进行观察。结果表明,由于热输入量的减小导致的NZ 腐蚀,点焊熔核区的晶粒尺寸和电阻 升高的幅度降低。Tafel 极化实验和电化学阻抗光谱分析结果表明,与金属铜和黄铜不同的是,在焊接 过程中,NZ 试样的热输入的减少改善了腐蚀行为。此外,焊接过程中热输入的增加对形成具有较高 保护性能被动薄膜的条件不利。


搅拌摩擦焊 铜 黄铜合金 腐蚀行为 碱性溶液 异种焊接头 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    KUNDIG K J A, COWIE J G. Copper and copper alloys [M]// MUPYER K. Mechanical Engineers' Handbook. New Jersey: Wiley Interscience, 2006: 117–220.CrossRefGoogle Scholar
  2. [2]
    ZHOU L, HUANG Y X, DONG S, ZHOU W L, FENG J C, HE W X. Effect of rotation speed on the microstructure and mechanical properties of dissimilar friction stir-welded copper/brass metals [J]. International Journal of Advanced Manufacturing Technology, 2016, 84(5–8): 1335–1343. DOI: 10.1007/s00170-015-7792-9.Google Scholar
  3. [3]
    ERDEM M. Study the structure and mechanical properties of copper-brass plates joined by friction stir welding [J]. International Journal of Advanced Manufacturing Technology, 2015, 76: 1583–1592.CrossRefGoogle Scholar
  4. [4]
    THOMAS W M, NICHOLAS E D, TEMPLESMITH P, DAWES C J, NEEDHAM J C, MURCH M G. Friction stir welding: International Patent Application. No. PCT/ GB92102203 and Great Britain Patent Application. No. 9125978.8 [P]. 1991.Google Scholar
  5. [5]
    RADOVANOVIĆ M B, MILIĆ S M, SIMONOVIĆ A T, PETROVIĆ MB, ANTONIJEVIĆ M. The impact of purine on brass behavior in neutral and alkaline sulphate solutions [J]. International Journal of Electrochemistry Society, 2012, 7: 11796–11810.Google Scholar
  6. [6]
    MERAN C. The joint properties of brass plates by friction stir welding [J]. Materials & Design, 2006, 27: 719–726.CrossRefGoogle Scholar
  7. [7]
    ALFANTAZI A M, AHMED T M, TROMANS D. The copper alloys corrosion behavior of in chloride media [J]. Materials & Design, 2009, 30: 2425–2430.CrossRefGoogle Scholar
  8. [8]
    PROCACCINI R, VÁZQUEZ M, CERÉ S. Copper and brass aged at open circuit potential in slightly alkaline solutions [J]. Electrochimica Acta, 2009, 54: 7324–7329.CrossRefGoogle Scholar
  9. [9]
    PROCACCINI R, VAZQUEZ M, SCHREINER W H, CERÉ S. The study of films' surface formed on copper and brass at open circuit potential [J]. Applied Surface Science, 2013, 268: 171–178.CrossRefGoogle Scholar
  10. [10]
    BITON M, SALITRA G, ILZYCER D, AURBACH D, MISHKOV P. The electrochemical behavior and passivation of copper and brass (Cu70/Zn30) electrodes in the concentrated aqueous KOH solutions [J]. Journal of Electrochimica Society, 2006, 153: B555–B565.CrossRefGoogle Scholar
  11. [11]
    KUNZE J, MAURICE V, STREHBLOW H, KLEIN L H, MARCUS P. In situ STM study of the duplex passive films formed on Cu (111) and Cu (001) in 0.1 M NaOPH [J]. Corrosion Science, 2004, 46: 245–264.CrossRefGoogle Scholar
  12. [12]
    MIKIC T K, MILOSEV I, PIHLAR B. Passivity and corrosion of Cu-XZn (X=10-40 wt.%) alloys in borate buffer containing chloride ions [J]. Journal of Applied Electrochemistry, 2005, 35: 975–984.CrossRefGoogle Scholar
  13. [13]
    FATTAH-ALHOSSEINI A, KESHAVARZ M K, TAHERI A H. Friction stir welding effects on electrochemical behavior of pure copper [J]. Transactions of Indian Institute of Metals. 2016, 69(7): 1423–1434.CrossRefGoogle Scholar
  14. [14]
    FENG Y, TAN K L, SIOW K S, TEO W K, HSIEH A K. The corrosion mechanisms and products of copper in aqueous solutions at different pH values [J]. Corrosion, 1997, 53(5): 389–398.CrossRefGoogle Scholar
  15. [15]
    MILOSEV I, MIKIĆ T K, GABERŠČEK M. The effect of Cu-rich sub-layer on the increased corrosion resistance rate of Cu-xZn alloys in chloride solution containing borate buffer [J]. Electrochimica Acta, 2006, 52: 415–426.CrossRefGoogle Scholar
  16. [16]
    KILINCCEKER G, ERBIL M. The effects of phosphate ions on the electrochemical behavior of brass in sulphate solutions [J]. Materials Chemistry & Physics, 2010, 119: 30–39.CrossRefGoogle Scholar
  17. [17]
    GHARAVI F, FADAEIFARD F, MATORI KA, YUNUS R, OTHMAN N K. Mechanical and structural evaluation of friction stir welded 6061 aluminum alloy lap joints at different welding speeds [J]. Kovove Materially, 2016, 54: 1–11.Google Scholar
  18. [18]
    AMINI K, GHARAVI F. Influence of welding speed on corrosion behavior of friction stir welded AA5086 aluminum alloy [J]. Journal of Central South University, 2016, 23: 1301–1311.CrossRefGoogle Scholar
  19. [19]
    GHARAVI F, EBRAHIMZADEH I, AMINI K, DARYA P. Evaluation of the microstructure and mechanical properties of friction stir-welded copper/brass dissimilar joints [J]. Materials Research Express, 2018, 5(7): 076517. Scholar
  20. [20]
    TAO S, LI D Y. Tribological, mechanical and electrochemical properties of monocrystalline copper deposits produced by pulse electrodeposition [J]. Nanotechnology, 2006, 17: 65–78.CrossRefGoogle Scholar
  21. [21]
    RALSTON K D, BIRBILLIS N. Effect of grain size on corrosion: A review [J]. Corrosion, 2010, 66(7): 075005.CrossRefGoogle Scholar
  22. [22]
    BADAWY W A, AL- KHARAFI F M. The brass alloys corrosion behavior in aqueous solutions with different pHs [J]. Corrosion, 1999, 55: 268–274.CrossRefGoogle Scholar
  23. [23]
    ANTONIJEVIC M, PETROVIC M B, BOGDANOVIC G D, RADOVANOVIC M B, STAMENKOVIC A T. The effects of pH and chloride ions on electrochemical behavior of brass in alkaline solution [J]. International Journal of Electrochemical Society, 2009, 4: 654–661.Google Scholar
  24. [24]
    SARLAK H, ATAPOUR M, ESMAILZADEH M. The corrosion behavior of friction stir welded lean duplex stainless steel [J]. Materials & Design, 2015, 66: 209–215.CrossRefGoogle Scholar
  25. [25]
    FATTAH-ALHOSSEINI A, IMANTALAB O. The accumulative roll bonding process effect on the electrochemical behavior of pure copper [J]. Journal of Alloys & Compounds, 2015, 632: 48–54.CrossRefGoogle Scholar
  26. [26]
    IMANTALAB O, FATTAH-ALHOSSEINI A. Electrochemical and passive behaviors of pure copper fabricated by accumulative roll bonding (ARB) process [J]. Journal of Materials Engineering and Performance, 2015, 24: 2579–2585.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Tiran BranchIslamic Azad UniversityIsfahanIran
  2. 2.Center for Advanced Engineering Research, Majlesi BranchIslamic Azad UniversityIsfahanIran
  3. 3.Department of Materials Engineering, Sirjan BranchIslamic Azad UniversitySirjanIran

Personalised recommendations