Advertisement

Journal of Central South University

, Volume 26, Issue 6, pp 1540–1549 | Cite as

Hydrogen reduced sodium vanadate nanowire arrays as electrode material of lithium-ion battery

  • Xue-liu Xu (徐学留)
  • Guang-zhong Li (李广忠)
  • Ze-wei Fu (符泽卫)
  • Jun-tao Hu (胡俊涛)
  • Zhi-ping Luo (罗治平)
  • Kang Hua (华康)
  • Xue-qin Lu (陆雪芹)Email author
  • Dong Fang (方东)Email author
  • Rui Bao (鲍瑞)
  • Jian-hong Yi (易健宏)
Article
  • 3 Downloads

Abstract

Vanadates and vanadium oxides are potential lithiumion electrode materials because of their easy preparation and high capacity properties. This paper reports the electrochemical lithium-storage performance of VO2 and NaV2O5 composite nanowire arrays. Firstly, Na5V12O32 nanowire arrays are fabricated by a hydrothermal method, and then VO2 and NaV2O5 composite nanowire arrays are prepared by a reduction reaction of Na5V12O32 nanowire arrays in hydrogen atmosphere. Crystal structure, chemical composition and morphology of the prepared samples are characterized in detail. The obtained composite is used as an electrode of a lithium-ion battery, which exhibits high reversible capacity and good cycle stability. The composite obtained at 500 °C presents a specific discharge capacity up to 345.1 mA × h/g after 50 cycles at a current density of 30 mA/g.

Keywords

sodium vanadate hydrogen reduction nanowire array lithium-ion battery 

氢还原钒酸钠纳米线阵列作为锂离子电池的电极

摘要

钒酸盐和氧化钒是潜在的锂离子电池电极材料,具有易于制备和高容量的特点。本文报道了 VO2 和NaV2O5 复合纳米线阵列的电化学锂储存性能。首先,采用水热法制备Na5V12O32 纳米线阵列, 然后将Na5V12O32 纳米线阵列在500 °C 的氢气氛中还原反应制备VO2 和NaV2O5 复合纳米线阵列。对 制备样品的晶体结构,化学组成和形态特征进行了表征。结果表明,所得复合纳米线阵列用作锂离子 电池的电极,具有高可逆容量和良好的循环稳定性。在电流密度为30 mA/g 时经过 50 次循环后,500 °C 下获得的复合物具有高达345.1 mA·h/g 的放电比容量。

关键词

钒酸钠 氢还原 纳米线阵列 锂离子电池 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LIU Cai-ling, LUO Shao-hua, HUANG Hong-bo, WANG Zhi-yuan, WANG Qing, ZHANG Ya-hui, LIU Yan-guo, ZHAI Yu-chun, WANG Zhao-wen. Potassium vanadate K0.23V2O5, as anode materials for lithium-ion and potassium-ion batteries [J]. Journal of Power Sources, 2018, 389: 77–83.CrossRefGoogle Scholar
  2. [2]
    WU Hua, CUI Yi. Designing nanostructured Si anodes for high energy lithium-ion batteries [J]. Nano Today, 2012, 7(5): 414–429.CrossRefGoogle Scholar
  3. [3]
    XIE Xiu-qiang, SU Da-wei, SUN Bing, ZHANG Jin-qiang, WANG Cheng-yin, WANG Guo-xiu. Synthesis of single-crystalline spinel LiMn2O4 nanorods for lithium-ion batteries with high rate capability and long cycle life [J]. Chemistry-A European Journal, 2014, 20(51): 17125–17131.CrossRefGoogle Scholar
  4. [4]
    OHTA S, KOBAYASHI T, SEKI J, ASAOKA T. Electrochemical performance of an all-solid-state lithium-ion battery with garnet-type oxide electrolyte [J]. Journal of Power Sources, 2012, 202: 332–335.CrossRefGoogle Scholar
  5. [5]
    XU Jun-yi, LI Jie, ZHU Yue-wu, ZHU Kai, LIU Ye-xiang, LIU Jin. A triPEG-boron based electrolyte membrane for wide temperature lithium-ion batteries [J]. RSC Advances, 2016, 6(24): 20343–20348.CrossRefGoogle Scholar
  6. [6]
    MAI Li-qiang, XU Lin, HAN Chun-hua, XU Xu, LUO Yan-zhu, ZHAO Shi-yong, ZHAO Yun-long. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium-ion batteries [J]. Nano Letters, 2010, 10(11): 4750–4755.CrossRefGoogle Scholar
  7. [7]
    MAI Li-qiang, XU Xu, XU Lin, HAN Chun-hua, LUO Yan-zhu. Vanadium oxide nanowires for Li-ion batteries [J]. Journal of Materials Research, 2011, 26(17): 2175–2185.CrossRefGoogle Scholar
  8. [8]
    CAO Yun-he, FANG Dong, WANG Chang, LI Li-cheng, XU Wei-lin, LUO Zhi-ping, LIU Xiao-qing, XIONG Chuan-xi, LIU Su-qin. Novel aligned sodium vanadate nanowire arrays for high performance lithium-ion battery electrodes [J]. RSC Advances, 2015, 5(53): 42955–42960.CrossRefGoogle Scholar
  9. [9]
    BALOGUN M S, LUO Yang, LYU Fei-yi, WANG Fu-xin, YANG Hao, LI Hai-bo, LIANG Chao-lun, HUANG Miao, HUANG Yong-chao, TONG Ye-xiang. Carbon quantum dot surface-engineered VO2 interwoven nanowires: A flexible cathode material for lithium and sodium ion batteries [J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9733–9744.CrossRefGoogle Scholar
  10. [10]
    QIAO Hui, ZHU Xian-jun, ZHENG Zhi, LIU Li, ZHANG Li-zhi. Synthesis of V3O7H2O nanobelts as cathode materials for lithium-ion batteries [J]. Electrochemistry Communications, 2006, 8(1): 21–26.CrossRefGoogle Scholar
  11. [11]
    WANG Yu, ZHANG Hui-juan, LI Wei-xiang, LIN Jian-yi, WONG C. Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries [J]. Journal of Materials Chemistry, 2011, 21(7): 2362–2368.CrossRefGoogle Scholar
  12. [12]
    CAO Yun-he, FANG Dong, LIU Xiao-qing, LUO Zhi-ping, LI Guang-zhong, XU Wei-lin, JIANG Ming, XIONG Chuan-xi. Sodium vanadate nanowires @ polypyrrole with synergetic core-shell structure for enhanced reversible sodium-ion storage [J]. Composites Science and Technology, 2016, 137: 130–137.CrossRefGoogle Scholar
  13. [13]
    LU Ya-kun, WU Jun, LIU Jun, LEI Ming, TANG Sha-sha, LU Pei-jie, YANG Lin-yu, YANG Hao-ran, YANG Qian. Facile synthesis of Na0.33V2O5 nanosheet-graphene hybrids as ultrahigh performance cathode materials for lithium-ion batteries [J]. ACS applied Materials & Interfaces, 2015, 7(31): 17433–17440.CrossRefGoogle Scholar
  14. [14]
    HIBINO M, OZAWA N, MURAKAMI T, NAKAMURA M, YAO T. Lithium insertion and extraction of cobalt vanadium de[J]. Electrochemical and Solid-State Letters, 2005, 8(10): A500–A503.CrossRefGoogle Scholar
  15. [15]
    LEI Shui-jin, TANG Kai-bin, JIN Yi, CHEN Chun-hua. Preparation of aligned MnV2O6 nanorods and their anodic performance for lithium secondary battery use [J]. Nanotechnology, 2007, 18: 175605.CrossRefGoogle Scholar
  16. [16]
    WANG Jiang-yan, YANG Nai-liang, TANG Hong-jie, DONG Zheng-hong, JIN Quan, YANG Mei, KISAILUS D-, ZHAO Hui-jun, TANG Zhi-yong, WANG Dan. Accurate control of multishelled CO3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries [J]. Angewandte Chemie International Edition, 2013, 52(25): 6417–6420.CrossRefGoogle Scholar
  17. [17]
    HE Zhang-xing, LI Man-man, LI Yue-hua, LI Chuan-chang, YI Zao, ZHU Jing, DAI Lei, MENG Wei, ZHOU Hui-zhu, WANG Ling. ZrO2 nanoparticle embedded carbon nanofibers by elecrospinning techniique as advanced negative electrode materials for vanadium redox flow battery [J]. Electrochimica Acta, 2019, 309: 166–176.CrossRefGoogle Scholar
  18. [18]
    HUAN Chang-meng, ZHAO Xin-yue, XIAO Xiu-di, LU Yuan, QI Shuai, ZHAN Yong-jun, ZHANG Ling-zhi, XU Gang. One-step solvothermal synthesis of V203@C nanoparticles as anode materials for lithium-ion battery [J]. Journal of Alloys and Compounds, 2019, 776: 568–574.CrossRefGoogle Scholar
  19. [19]
    LU Yan-rong, ZHANG Lu, CHENG Gang, WANG Peng-fei, ZHANG Tian-ze, LI Chuan-chan, JIANG Ying-qiao, HE Zhang-xing, DAI Lei, WANG Ling. Preparation of carbon nanosheet by molten salt route and its application in catalyzing VO2+/VO2+ redox reaction, ZrO2 nanoparticle embedded carbon nanofibers by electrospinning technique as advanced negative electrode materials for vanadium redox flow battery [J]. Journal of The Electrochemical Society, 2019, 166:A953–A959.CrossRefGoogle Scholar
  20. [20]
    LUBKE M, NING D, POWELL M J, BRETT D J L, SHEARING P R, LIU Z, DARR J A. VO2 nano-sheet negative electrodes for lithium-ion batteries [J]. Electrochemistry Communications, 2016, 64: 56–60.CrossRefGoogle Scholar
  21. [21]
    HE G, LI L, MANTHIRAM A. VO2/rGO nanorods as a potential anode for sodium-and lithium-ion batteries [J]. Journal of Materials Chemistry A, 2015, 3(28): 14750–14758.CrossRefGoogle Scholar
  22. [22]
    HUA Kang, LI Xiu-juan, BAO Rui, FANG Dong, JIANG Ming, YI Jian-hong, LUO Zhi-ping, SHU Yong-chun, SUN Ben-shuang. Electrochemical performance of silver vanadate/silver nanowire composite for lithium-ion batteries [J]. Solid State Ionics, 2018, 325: 133–140.CrossRefGoogle Scholar
  23. [23]
    HUA Kang, LI Xiu-juan, FANG Dong, YI Jian-hong, BAO Rui, LUO Zhi-ping. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery [J]. Applied Surface Science, 2018, 447: 610–616.CrossRefGoogle Scholar
  24. [24]
    WANG Chang, CAO Yun-he, LUO Zhi-ping, LI Guang-zhong, XU Wei-lin, XIONG Chuan-xi, HE Guo-qiu, WANG Ying-de, LI Shan, LIU Hui, FANG Dong Flexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery [J]. Chemical Engineering Journal, 2017, 307: 382–388.CrossRefGoogle Scholar
  25. [25]
    PEI Cun-yuan, XIONG Fang-yu, SHENG Jin-zhi, YIN Ya-meng, TAN Shuang-shuang, WANG Dan-dan, HAN Chun-hua, AN Qin-you, MAI Li-qiang. VO2 Nanoflakes as the cathode material of hybrid magnesium-lithium-ion batteries with high energy density [J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17060–17066.CrossRefGoogle Scholar
  26. [26]
    Baddour-HADJEAN R, HUYNH L T N, EMERY N, PEREIRA-RAMOS J P. Lithium insertion in a'-NaV2O5: Na-pillaring effect on the structural and electrochemical properties [J]. Electrochemical Acta, 2018, 270: 224–235.CrossRefGoogle Scholar
  27. [27]
    LUKATSKAYA M, DUNN B, GOGOTSI Y Multidimensional materials and device architectures for future hybrid energy storage [J]. Nature Communications, 2016, 7: 12647–12661.CrossRefGoogle Scholar
  28. [28]
    HE Han-na, SHANG Zhen-gang, HUANG Xiao-bing, TAN Shuai, SUN Dan, XU Guo-qing, TANG You-gen, WANG Hai-yan. Ultrathin (NH4)0.5V2O5 nanosheets as a stable anode for aqueous lithium-ion battery [J]. Journal of the Electrochemical Society, 2016, 163(10): A2349–A2355.CrossRefGoogle Scholar
  29. [29]
    HU Wen, ZHANG Xin-bo, CHENG Yong-lian, WU Yao-ming, WANG Li-min. Low-cost and facile one-pot synthesis of pure single-crystalline e-Cuo.95 V2O5 nanoribbons: High capacity cathode material for rechargeable Li-ion batteries [J]. Chemical Communications, 2011,47(18): 5250–5252.CrossRefGoogle Scholar
  30. [30]
    YANG Kai-wen, FANG Guo-zhao, ZHOU Jiang, QIN Mu-lan, TANG Yan-an, PAN An-qiang, LIANG Shu-quan. Hydrothermal synthesis of sodium vanadate nanobelts as high-performance cathode materials for lithium batteries [J]. Journal of Power Sources, 2016, 325: 383–390.CrossRefGoogle Scholar
  31. [31]
    TANG You-gen, SUN Dan, WANG Hai-yan, HUANG Xiao-bing, ZHANG Hui, LIU Su-qin, LIU You-nian. Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery [J]. RSC Advances, 2014,4(16): 8328–8334.CrossRefGoogle Scholar
  32. [32]
    LIANG Shu-quan, ZHOU Jiang, FANG Guo-zhao, LIU Jing, TANG Yan, LI Xi-lin, PAN An-qiang. Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8704–8709.CrossRefGoogle Scholar
  33. [33]
    TAN Qin-guang, ZHU Qin-yu, PAN An-qiang, WANG Ya-ping, TANG Yan, TAN Xiao-ping, LIANG Shu-quan, CAO Guo-zhong. Template-free synthesis of ß-NaO.33V2O5 microspheres as cathode materials for lithium-ion batteries [J]. Cryst Eng Comm, 2015, 17(26): 4774–4780.CrossRefGoogle Scholar
  34. [34]
    WANG Hai-yan, WANG Wen-jie, REN Yu, HUANG Ke-long, LIU Su-qin. A new cathode material Na2V6O16xH2O nanowire for lithium ion battery [J]. Journal of Power Sources, 2012, 199: 263–269.CrossRefGoogle Scholar
  35. [35]
    LIU Hai-mei, WANG Yong-gang, WANG Kai-xue, HOSONO E, ZHOU Hao-shen. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries [J]. Journal of Materials Chemistry, 2009, 19(18): 2835–2840.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xue-liu Xu (徐学留)
    • 1
  • Guang-zhong Li (李广忠)
    • 2
  • Ze-wei Fu (符泽卫)
    • 3
  • Jun-tao Hu (胡俊涛)
    • 3
  • Zhi-ping Luo (罗治平)
    • 4
  • Kang Hua (华康)
    • 1
  • Xue-qin Lu (陆雪芹)
    • 5
    Email author
  • Dong Fang (方东)
    • 1
    Email author
  • Rui Bao (鲍瑞)
    • 1
  • Jian-hong Yi (易健宏)
    • 1
  1. 1.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.State Key Laboratory of Porous Metal MaterialsNorthwest Institute for Nonferrous Metal ResearchXi’anChina
  3. 3.Yunnan Tin Group (Holding) Co., Ltd.KunmingChina
  4. 4.Department of Chemistry and PhysicsFayetteville State UniversityFayettevilleUSA
  5. 5.School of Foreign LanguagesWuhan Textile UniversityWuhanChina

Personalised recommendations