Advertisement

Journal of Central South University

, Volume 26, Issue 6, pp 1530–1539 | Cite as

Lithium storage performance of {010}-faceted and [111]-faceted anatase TiO2 nanocrystals

  • De-jian Du (杜德健)
  • Yi-en Du (杜意恩)
  • Wen-bo Yue (岳文博)Email author
  • Xiao-jing Yang (杨晓晶)Email author
Article

Abstract

As a popular anode material for lithium-ion batteries, anatase TiO2 nanoparticles with exposed {001} facets usually exhibit exceptional lithium storage performance owing to more accessible sites and fast migration of lithium ions along the good crystalline channels. However, there are few researches on the lithium storage capability of TiO2 nanocrystals with other high-energy facets owing to lack of effective synthesis method for controlling crystal facets. Herein, anatase TiO2 nanocrystals with exposed {010}- and [111]-facets are successfully prepared by using the delaminated tetratitanate nanoribbons as precursors. The electrochemical properties of these TiO2 nanocrystals with high-energy surfaces and the comparison with commercial TiO2 nanoparticles (P25) are studied. It is found that the cycle and rate performance of TiO2 nanocrystals is highly improved by reducing the particle size of nanocrystals. Moreover, TiO2 nanocrystals with exposed {010}- and [111]-facets exhibit better lithium storage capacities in comparison with P25 without a specific facet though P25 has smaller particle size than these TiO2 nanocrystals, indicating that the exposed facets of TiO2 nanocrystals have an important impact on their lithium storage capacity. Therefore, the synthesis design of high-performance TiO2 materials applied in the next-generation secondary batteries should both consider the particle size and the exposed facets of nanocrystals.

Key words

titanium dioxide nanocrystal exposed facet lithium-ion battery 

具有{010}和[111]晶面的锐钛矿型TiO2 纳米晶体的储锂性能

摘要

作为锂离子电池的负极材料,具有{001}晶面的锐钛矿型TiO2 纳米晶体通常展现出良好的储锂 性能,这是由于该晶面具有更多的接触位点,同时锂离子沿着该晶格方向的扩散速度较快。然而,由 于缺乏有效控制TiO2 晶面的合成方法,对具有其它高能晶面TiO2 晶体的储锂性能的研究较少。本文 以剥离的钛酸盐纳米带为前驱体,通过水热法合成了具有{010}和[111]晶面的锐钛矿型TiO2 纳米晶体。 通过对该TiO2 纳米晶体的电化学性能进行研究,并与商业用的TiO2 纳米颗粒(P25)的性能进行比较, 发现通过减小TiO2 纳米晶的粒径,可以大幅度提高TiO2 纳米晶体的循环和倍率性能。此外,尽管P25 具有更小的粒径,相比没有特定晶面的P25,具有{010}和[111]晶面的TiO2 纳米晶体仍展现出更好的 储锂能力。这表明TiO2 纳米晶体的暴露晶面对其储锂性能同样具有重要影响。因此,在设计合成具有 高性能的TiO2 电极材料时,要同时考虑纳米晶体的粒径和暴露晶面等因素。

关键词

二氧化钛 纳米晶体 暴露晶面 锂离子电池 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SUBRAMANIAN V, KARKI A, GNANASEKAR K I, EDDY F P, RAMBABU B. Nanocrystalline TiO2 (anatase) for Li-ion batteries [J]. Journal of Power Sources, 2006, 159(1): 186–192. DOI: 10.1016/j.jpowsour.2006.04.027.CrossRefGoogle Scholar
  2. [2]
    HE Han-na, WANG Hai-yan, SUN Dan, SHAO Min-hua, HUANG Xiao-bing, TANG You-gen. N-doped rutile TiO2/C with significantly enhanced Na storage capacity for Na-ion batteries [J]. Electrochimica Acta, 2017, 236: 43–52. DOI: 10.1016/j.electacta.2017.03.104.CrossRefGoogle Scholar
  3. [3]
    HE Han-na, SUN Dan, ZHANG Qi, FANG Fu, TANG You-gen, GUO Jun, SHAO Min-hua, WANG Hai-yan. Iron doped cauliflower-like rutile TiO2 with superior sodium storage properties [J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6093–6103. DOI: 10.1021/acsami.6bl5516.CrossRefGoogle Scholar
  4. [4]
    DENG Da, KIM M G, LEE J Y, CHO J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J]. Energy & Environmental Science, 2009, 2(8): 818–837. DOI: 10.1039/B823474D.CrossRefGoogle Scholar
  5. [5]
    KAVAN L. Lithium insertion into TiO2 (anatase): electrochemistry, Raman spectroscopy, and isotope labeling [J]. Journal of Solid State Electrochemistry, 2014, 18(8): 2297–2306. DOI: 10.1007/sl0008-014-2435-x.CrossRefGoogle Scholar
  6. [6]
    ARMSTRONG A R, ARMSTRONG G, CANALES J, BRUCE P G TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J]. Journal of Power Sources, 2005, 146(1, 2): 501–506. DOI: 10.1016/j.jpowsour.2005.03.057.CrossRefGoogle Scholar
  7. [7]
    ARMSTRONG G, ARMSTRONG A R, BRUCE P G, REALE P, SCROSATI B. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFeP04 or LiNio.5Mn1.5O4 cathodes and a polymer electrolyte [J]. Advanced Materials, 2006, 18(19): 2597–2600. DOI: 10.1002/adma.200601232.CrossRefGoogle Scholar
  8. [8]
    SHI Si-qi, GAO Jian, LIU Yue, ZHAO Yan, WU Qu, JU Wang-wei, OUYANG Chu-ying, XIAO Rui-juan. Multi-scale computation methods: Their applications in lithium-ion battery research and development [J]. Chinese Physics B, 2016, 25(1): 018212. DOI: 10.1088/1674-1056/25/1/018212.CrossRefGoogle Scholar
  9. [9]
    CHEN Jun-song, TAN Yi-liang, LI Chang-ming, CHEAH Y L, LUAN De-yan, MADHAVI S, BOEY F Y C, ARCHER L A, LOU Xiong-wen, Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage [J]. Journal of the American Chemical Society, 2010, 132(17): 6124–6130. DOI: 10.1021/jal00102yCrossRefGoogle Scholar
  10. [10]
    SUN Cheng-hua, YANG Xiao-hua, CHEN Jun-song, LI Zhen, LOU Xiong-wen, LI Chun-zhong, SMITH S C, LU Gao-qing, YANG Hua-gui. Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance [J]. Chemical Communications, 2010, 46(33): 6129–6131. DOI: 10.1039/C0CC00832J.CrossRefGoogle Scholar
  11. [11]
    YU Yan-long, WANG Xiao-liang, SUN Hong-yu, AHMAD M. 3D anatase TiO2 hollow microspheres assembled with high-energy {001} facets for lithium-ion batteries [J]. RSC Advances, 2012, 2(20): 7901–7905. DOI: 10.1039/ C2RA20718D.CrossRefGoogle Scholar
  12. [12]
    CHENG Xun-liang, HU Ming, HUANG R, JIANG Ji-sen, HF-free synthesis of anatase TiO2 nanosheets with largely exposed and clean {001} facets and their enhanced rate performance as anodes of lithium-ion battery [J]. ACS Applied Materials & Interfaces, 2014, 6(21): 19176–19183. DOI: 10.1021/am504971h.CrossRefGoogle Scholar
  13. [13]
    MING Hai, KUMAR P, YANG Wen-jing, FU Yu, MING Jim, KWAK W J, LI L J, SUN Y K, ZHENG Jun-wei, Green strategy to single crystalline anatase TiO2 nanosheets with dominant (001) facets and its lithiation study toward sustainable cobalt-free lithium ion full battery [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3086–3095. DOI: 10.1021/acssuschemeng.5b00553.CrossRefGoogle Scholar
  14. [14]
    XU Hua, REUNCHAN P, OUYANG Shu-xin, TONG Hua, UMEZAWA N, KAKO T, YE Jin-hua. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution [J]. Chemistry of Materials, 2013, 25(3): 405–411. DOI: 10.1021/cm303502b.CrossRefGoogle Scholar
  15. [15]
    HAN Xi-guang, HAN Xiao, SUN Lin-qiang, WANG Po, JIN Ming-shang, WANG Xiao-jun. Facile preparation of hybrid anatase/rutile TiO2 nanorods with exposed (010) facets for lithium ion batteries [J]. Materials Chemistry and Physics, 2016, 171: 11–15. DOI: 10.1016/j.matchemphys.2015. 11.048.CrossRefGoogle Scholar
  16. [16]
    DU Yi-en, FENG Qi, CHEN Chang-dong, TANAKA Y, YANG Xiao-jing. Photocatalytic and dye-sensitized solar cell performances of {010}-faceted and [111]-faceted anatase TiO2 nanocrystals synthesized from tetratitanate nanoribbons [J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16007–16019. DOI: 10.1021/am503914q.CrossRefGoogle Scholar
  17. [17]
    DU Yi-en, DU De-jian, FENG Qi, YANG Xiao-jing. Delithation, exfoliation, and transformation of rock-salt-structured Li2TiO3 to highly exposed {010}-faceted anatase [J]. ACS Applied Materials & Interfaces, 2015, 7(15): 7995–8004. DOI: 10.1021/acsami.5b00227.CrossRefGoogle Scholar
  18. [18]
    PFANZELT M, KUBIAK P, FLEISCHHAMMER M, WOHLFAHRT-MEHRENS M. TiO2 rutile-An alternative anode material for safe lithium-ion batteries [J]. Journal of Power Sources, 2011, 196(16): 6815–6821. DOI: 10.1016/ j.jpowsour.2010.09.109.CrossRefGoogle Scholar
  19. [19]
    ZHANG Qi, HE Han-na, HUANG Xiao-bing, YAN Jun, TANG You-gen, WANG Hai-yan. TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries [J]. Chemical Engineering Journal, 2018, 332: 57–65. DOI: 10.1016/j.cej.2017.09.044.CrossRefGoogle Scholar
  20. [20]
    ZHAO Peng, YUE Wen-bo, YUAN Xu, BAO Hua-ying. Exceptional lithium anodic performance of Pd-doped graphene-based SnO2 nanocomposite [J]. Electrochimica Acta, 2017, 225: 322–329. DOI: 10.1016/j.electacta.2016. 12.124.CrossRefGoogle Scholar
  21. [21]
    ZHANG Si-qi, LIN Rong, YUE Wen-bo, NIU Fang-zhou, MA Jie, YANG Xiao-jing. Novel synthesis of metal sulfides-loaded porous carbon as anode materials for lithium-ion batteries [J]. Chemical Engineering Journal, 2017, 314: 19–26. DOI: 10.1016/j.cej.2016.12.123.CrossRefGoogle Scholar
  22. [22]
    ABBASI A, MIRHABIBI A, ARABI H, GOLMOHAMMAD M, BRYDSON R. Synthesis, characterization and electrochemical performances of γ-Fe2O3 cathode material for Li-ion batteries [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(8): 7953–7961. DOI: 10.1007/sl0854-016-4788-7.Google Scholar
  23. [23]
    XUE Xia, SUN Dan, ZENG Xian-guang, HUANG Xiao-bing, ZHANG He-he, TANG You-gen, WANG Hai-yan. Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries [J]. Journal of Central South University, 2018, 25(10): 2320–2331. DOI: 10.1007/sll771-018-3916-3.CrossRefGoogle Scholar
  24. [24]
    CHEN Chang-dong, XU Lin-feng, SEWVANDI G A, KUSUNOSE T, TANAKA Y, NAKANISHI S, FENG Qi. Microwave-assisted topochemical conversion of layered titanate nanosheets to {010}-faceted anatase nanocrystals for high performance photocatalysts and dye-sensitized solar cells [J]. Crystal Growth & Design, 2014, 14(11): 5801–5811. DOI: 10.1021/cg501062r.CrossRefGoogle Scholar
  25. [25]
    YANG Xu-ming, WANG Chao, YANG Ying-chang, ZHANG Yan, JIA Xin-nan, CHEN Jun, JI Xiao-bo. Anatase TiO2 nanocubes for fast and durable sodium ion battery anodes [J]. Journal of Materials Chemistry A, 2015, 3(16): 8800–8807. DOI: 10.1039/C5TA00614GCrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina
  2. 2.School of Chemistry & Chemical EngineeringJinzhong UniversityJinzhongChina

Personalised recommendations