Journal of Central South University

, Volume 26, Issue 6, pp 1503–1509 | Cite as

Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction

  • Mao-qi Cao (曹茂启)
  • Kang Liu (刘康)
  • Hui-min Zhou (周惠敏)
  • Hong-mei Li (李红梅)Email author
  • Xiao-hui Gao (高小惠)
  • Xiao-qing Qiu (邱晓清)Email author
  • Min Liu (刘敏)


Photocatalytic carbon dioxide reduction reaction (CO2RR) has been considered as one of most effective ways to solve the current energy crisis and environmental problems. However, the practical application of photocatalytic CO2RR is largely hindered by lock of efficient catalyst. Here, hierarchical titanium dioxide (TiO2) nanostructures with a highly active {001} surface were successfully synthesized by a facile approach from metal Ti powders. The obtained hierarchical TiO2 nanostructures were composed of TiO2 nanorods, which have a diameter about 5–10 nm and a length of several micrometers. It is found that these nanorods have exposed {001} facets. On the other hand, these hierarchical TiO2 nanostructures have a good light-harvesting efficiency with the help of TiO2 nanorods component and large specific surface area. Therefore, these hierarchical TiO2 nanostructures exhibit a much better activity for photocatalytic CO2 reduction than that of commercial TiO2 (P25). This high activity can be attributed to the synergistic effects of active surface, efficient charge transfer along nanorods and good light harvesting in the nanorod-hierarchical nanostructures.

Key words

TiO2 {001} facets hierarchical nanorods CO2 photoreduction 



光催化二氧化碳还原被认为是能够同时解决能源和环境问题的最有效方式之一。但高效的二氧 化碳还原催化剂的缺乏限制其实际应用。在本文中,我们成功合成了具有{001}高活性晶面的分级二 氧化钛纳米棒结构,纳米棒的直径为5~10 nm,长度为几个微米。分级纳米棒结构使得其具有更大的 比表面积,进而大大促进了光吸收。具有有效电荷传输、更大比表面积及更强光吸收的分级结构二氧 化钛纳米棒与商业的P25 二氧化钛相比具有更强的二氧化碳光催化还原性能。


{001}晶面 分级纳米棒 二氧化碳光还原 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    LINSEBIGLER A L, LU G Q, YATES J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chem Rev, 1995, 95: 735–758.CrossRefGoogle Scholar
  2. [2]
    HE H N, GAN Q M, WANG H Y, XU G L, ZHANG X Y, HUANG D, FU F, TANG Y G, AMINE K, SHAO M H. Structure-dependent performance of TiO2/C as anode material for Na-ion batteries [J]. Nano Energy, 2018, 44: 217–227.CrossRefGoogle Scholar
  3. [3]
    ZHANG Q, HE H N, HUANG X B, YAN J, TANG Y G, WANG H Y. TiO2@C nanosheets with highly exposed (001) facets as a high-capacity anode for Na-ion batteries [J]. Chem Eng J, 2018, 332: 57–65.CrossRefGoogle Scholar
  4. [4]
    XUE X, SUN D, ZENG X G, HUANG X B, ZHANG H H, TANG Y G, WANG H Y. Two-step carbon modification of NaTi2(PO4)3 with improved sodium storage performance for Na-ion batteries [J]. Journal of Central South University, 2018, 25(10): 2320–2331.CrossRefGoogle Scholar
  5. [5]
    LIU A Q, LIU K, ZHOU H M, LI H M, QIU X Q, YANG Y, LIU M. Solution evaporation processed high quality perovskite films [J]. Sci Bull, 2018, 63: 1591–1596.CrossRefGoogle Scholar
  6. [6]
    CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J]. Catal Today, 2009, 148: 191–205.CrossRefGoogle Scholar
  7. [7]
    PAN J, LIU G, LU G Q, CHENG H M. On the true Photoreactivity Order of {001}, {010}, and {101} facets of anatase TiO2 crystals [J]. Angew Chem Int Ed, 2011, 50: 2133–2137.CrossRefGoogle Scholar
  8. [8]
    ROY N, SOHN Y, PRADHAN D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis [J]. ACS Nano, 2013, 7: 2532–2540.CrossRefGoogle Scholar
  9. [9]
    LAZZERI M, VITTADINI A, SELLONI A. Erratum: Structure and energetics of stoichiometric TiO2 anatase surfaces [Phys. Rev. B 63, 155409 (2001)] [J]. Phys Rev B, 2002, 65: 119901.CrossRefGoogle Scholar
  10. [10]
    DIEBOLD U. The surface science of titanium dioxide [J]. Surf Sci Rep, 2003, 48: 53–229.CrossRefGoogle Scholar
  11. [11]
    SELLONI A. Fluorine-containing species can cause titania to crystallize with an unusually large fraction of reactive {001} facets [J]. Nat Mater, 2008, 7: 613–615.CrossRefGoogle Scholar
  12. [12]
    YANG H G, SUN C H, QIAO S Z, ZOU J, LIU G, SMITH S C, CHENG H M, LU G Q. Anatase TiO2 single crystals with a large percentage of reactive facets [J]. Nature, 2008, 453: 638–641.CrossRefGoogle Scholar
  13. [13]
    LIU M, PIAO L Y, LU W M, JU S T, ZHAO L, ZHOU C L, YAN Z J, WANG W J. Anatase TiO2 single crystals with exposed {001} and {110} facets facile synthesis and enhanced photocatalysis [J]. Chem Coumm, 2010, 46: 1664–1666.CrossRefGoogle Scholar
  14. [14]
    KAKIHANA M, TADA M, SHIRO M, PETRYKIN V, OSADA M, NAKAMURA Y. Structure and Stability of water soluble (NH4)8[Ti4(C6H4O7)4(O2)4]8H2O [J]. Inorg Chem, 2001, 40: 891–894.CrossRefGoogle Scholar
  15. [15]
    MAO Y B, WONG S S. Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures [J]. J Am Chem Soc, 2006, 128: 8217–8226.CrossRefGoogle Scholar
  16. [16]
    AO Y, FU D, YUAN C. A simple method for the preparation of titania hollow sphere [J]. Catal Commun, 2008, 9: 2574–2577.CrossRefGoogle Scholar
  17. [17]
    YU J G, LIU S W, YU H G. Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation [J]. J Catal, 2007, 249: 59–66.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mao-qi Cao (曹茂启)
    • 1
    • 2
  • Kang Liu (刘康)
    • 1
  • Hui-min Zhou (周惠敏)
    • 1
  • Hong-mei Li (李红梅)
    • 1
    Email author
  • Xiao-hui Gao (高小惠)
    • 1
  • Xiao-qing Qiu (邱晓清)
    • 3
    • 4
    Email author
  • Min Liu (刘敏)
    • 1
    • 5
  1. 1.Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and ElectronicsCentral South UniversityChangshaChina
  2. 2.School of Chemistry and Chemical EngineeringQiannan Normal University for NationalitiesDuyunChina
  3. 3.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina
  4. 4.School of Materials Science and Energy EngineeringFoshan UniversityFoshan528000China
  5. 5.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations