Journal of Central South University

, Volume 26, Issue 6, pp 1493–1502 | Cite as

Facile synthesis of Sb@Sb2O3/reduced graphene oxide composite with superior lithium-storage performance

  • Xiao-zhong Zhou (周小中)Email author
  • He-jie Lu (陆和杰)
  • Xing-chang Tang (唐兴昌)Email author
  • Ya-ping Zeng (曾娅萍)
  • Xin Yu (余欣)


Sb-based materials have been considered one of the most promising anode electrode materials for lithium-ion batteries, whereas they were commonly synthesized through time-consuming and costly processes. Here, Sb@Sb2O3/reduced graphene oxide (Sb@Sb2O3/rGO) composite was successfully synthesized by a facile one-pot chemical method at ambient temperature. Based on the XRD and TGA analysis, the mass fractions of Sb and Sb2O3 in the Sb@Sb2O3/rGO composite are ca. 34.05% and 26.6%, respectively. When used as an alternative electrode for lithium ion batteries, a high reversible capacity of 790.9 mA∙h/g could be delivered after 200 cycles with the capacity retention of 93.8% at a current density of 200 mA/g. And a capacity of 260 mA∙h/g could be maintained even at 2000 mA/g. These excellent electrochemical properties can be attributed to its well-constructed nanostructure. The Sb and Sb2O3 particles with size of 10 nm were tightly anchored on rGO sheets through electronic coupling, which could not only alleviate the stress induced by the volume expansion, suppress the aggregation of Sb and Sb2O3 particles, but also improve the electron transfer ability during cycling


Sb@Sb2O3/rGO composite synthesis electrochemical performance lithium-ion batteries 



锑基材料被认为是制备锂离子电池最具应用前景的负极材料之一,然而复杂而成本昂贵的制备过程严重限制了其应用。本文采用一锅化学还原的简便方法在室温下得到Sb@Sb2O3/还原氧化石墨烯(Sb@Sb2O3/rGO)复合材料。XRD 和TGA 结果表明,复合材料中Sb 和Sb2O3 的质量分数分别为 34.0%和 26.6%。将该复合材料用作锂离子电池电极材料使用时,在 200 mA/g 电流密度下循环 200 次后可逆比容量仍保持在 790.9 mA∙h/g,容量保持率高达 93.8%; 在 2000 mA/g 电流密度下充放电时仍有 260mA∙h/g 的可逆比容量。优越的电化学性能得益于所制备复合材料良好的纳米结构,尺寸约为10 nm 的Sb 和Sb2O3 颗粒通过电子耦合作用牢牢地锚定在还原氧化石墨烯片层上。该结构既能有效缓冲因储锂过程中产生体积膨胀而引起的应力作用,还可抑制 Sb 和Sb2O3 纳米颗粒的团聚,更能提高活性材料的导电性。


Sb@Sb2O3/rGO 复合材料 制备 电化学性能 锂离子电池 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359–367. DOI: 10.1038/35104644.CrossRefGoogle Scholar
  2. [2]
    ZHAO Yang, LI Xi-fei, YAN Bo, XIONG Dong-bin, LI De-jun, LAWES S, SUN Xue-liang. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries [J]. Advanced Energy Materials, 2016, 6(8): 1502175. DOI: 10.1002/aenm. 201502175.Google Scholar
  3. [3]
    WU Ling, ZHENG Jie, WANG Liang, XIONG Xun-hui, SHAO Yan-yan, WANG Gang, WANG Jeng-han, ZHONG Sheng-kui, WU Ming-hong. PPy-encapsulated SnS2 nanosheets stabilized by defects on TiO2 support as durable anode material for lithium-ion battery [J]. Angewandte Chemie International Edition, 2019, 58: 811–815. DOI: 10.1002/anie.201811784.CrossRefGoogle Scholar
  4. [4]
    XIONG Xun-hui, WANG Zhi-xing, YUE Peng, GUO Hua-jun, WU Fei-xiang, WANG Jie-xi, LI Xin-hai. Washing effects on electrochemical performance and storage characteristics of LiNio.8Coo.1Mno.1O2 as cathode material for lithium-ion batteries [J]. Journal of Power Sources, 2013, 222: 318–325. DOI: 10.1016/j.jpowsour.2012.08.029.CrossRefGoogle Scholar
  5. [5]
    YU D Y, PRIKHODCHENKO P V, MASON C W, BATABYAL S K, GUN J, SLADKEVICH S, MEDVEDEV A G, LEV O. High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries [J]. Nature Communications, 2013, 4(4): 1–7. DOI: 10.1038/ncomms3922.Google Scholar
  6. [6]
    BAI Peng, LI Ju, BRUSHETT F R, BAZANT M Z. Transition of lithium growth mechanisms in liquid electrolytes [J]. Energy Environmental Science, 2016, 9(10): 3221–3229. DOI: 10.1039/c6ee01674j.CrossRefGoogle Scholar
  7. [7]
    WU Tian-jing, ZHANG Chen-yang, HOU Hong-shuai, GE Peng, ZOU Guo-qiang, XU Wei, LI Si-min, HUANG Zhao-dong, GUO Tian-xiao, JING Ming-jun, JI Xiao-bo. Dual functions of potassium antimony(III)-tartrate in tuning antimony/carbon composites for long-life Na-ion batteries [J]. Advanced Functional Materials, 2018, 28(10): 1705744. DOI: 10.1002/adfm.201705744.Google Scholar
  8. [8]
    YANG Xia, MA Jing-jing, WANG Hui-jun, CHAI Ya-qin, YUAN-Ruo. Partially reduced Sb/Sb203@C spheres with enhanced electrochemical performance for lithium ion storage [J]. Materials Chemistry and Physics, 2018, 213: 208–212. DOI: 10.1016/j.matchemphys.2018.04.027.CrossRefGoogle Scholar
  9. [9]
    BRYNGELSSON H, ESKHULT J, NYHOLM L, HERRANEN M, ALM O, EDSTRO K. Electrodeposited Sb and Sb//Sb203 nanoparticle coatings as anode materials for Li-ion batteries [J]. Chemistry of Materials, 2007, 19(5): 1170–1180. DOI: 10.1021/cm0624769.CrossRefGoogle Scholar
  10. [10]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, LU Xiao-fang, LV Xue-yan, MA Guo-fu, WANG Qing-tao, LEI Zi-qiang. Sb203 Nanoparticles anchored on graphene sheets via alcohol dissolution-reprecipitation method for excellent lithium-storage properties [J]. Aupcs Applied Materials & Interfaces, 2017, 9(40): 34927–34936. DOI: 10.1021/acsami.7bl0107.CrossRefGoogle Scholar
  11. [11]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, WANG Jian-wen, WANG Qing-tao, MA Guo-fu, LEI Zi-qiang. Sb204/reduced graphene oxide composite as high-performance anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2017, 699: 611–618. DOI: 10.1016/j.jallcom. 2016.12.434.CrossRefGoogle Scholar
  12. [12]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, XU Xiao-hu, YAN Jian, MA Guo-fu, LEI Zi-qiang. Anchoring Sb603 nanocrystals on graphene sheets for enhanced lithium storage [J]. Acs Applied Materials & Interfaces, 2016, 8(51): 35398–35406. DOI: 10.102l/acsami.6b 13548.CrossRefGoogle Scholar
  13. [13]
    ZHOU Jing, ZHENG Cai-hong, WANG Hua, YANG Jie, HU Peng-fei, GUO Lin. 3D nest-shaped Sb203/Rupgo composite based high-performance lithium-ion batteries [J]. Nanoscale, 2016, 8(39): 17131–17135. DOI: 10.1039/c6nr06454j.CrossRefGoogle Scholar
  14. [14]
    XUE Xia, SUN Dan, ZENG Xian-guang, HUANG Xiao-bing, ZHANG He-he, TANG You-gen, WANG Hai-yan. Two-step carbon modification of NaTi2(P04)3 with improved sodium storage performance for Na-ion batteries [J]. Jounal of Central South University, 2018, 25: 2320–2331. DOI: 10.1007/sll771-018-3916-3.CrossRefGoogle Scholar
  15. [15]
    POIZOT P, LARUELLE S, GRUGEON S, DUPONT L, TARASCON J M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature, 2000, 407: 496–499. DOI: 10.1038/35035045.CrossRefGoogle Scholar
  16. [16]
    ZHANG Rui, LI Hui-yong, SUN Dan, LUAN Jing-yi, HUANG Xiao-bing, TANG You-gen, WANG Hai-yan. Facile preparation of robust porous M0S2/C nanosheet networks as anode material for sodium ion batteries [J]. Jounal of Materials Science, 2019, 54: 2472–2482. DOI: 10.1007/ sl0853-018-2991-z.CrossRefGoogle Scholar
  17. [17]
    SUN Dan, ZHU Xiao-bo, LUO Bin, ZHANG Yu, TANG You-gen, WANG Hai-yan. New binder-free metal phosphide-carbon feit composite anodes for sodium-ion battery [J]. Advanced Energy Materials, 2018, 8: 1801197. DOI: 10.1002/aenm.201801197.Google Scholar
  18. [18]
    XIONG Dong-bin, LI Xi-fei, SHAN Hui, YAN Bo, DONG Li-tian, CAO Ye, LI De-jun. Controllable oxygenic functional groups of metal-free cathodes for high performance lithium ion batteries [J]. Journal of Materials Chemistry A, 2015, 3(21): 11376–11386. DOI: 10.1039/ C5TA01574J.CrossRefGoogle Scholar
  19. [19]
    WU Song-ping, XU Rui, LU Ming-jia, GE Rong-yun, IOCOZZIA J, HAN Cui-ping, JIANG Bei-bei, LIN Zhi-qun. Graphene-containing nanomaterials for lithium-ion batteries [J]. Advanced Energy Materials, 2015, 5(21): 1500400. DOI: 10.1002/aenm.201500400.Google Scholar
  20. [20]
    JI Li-wen, MEDURI P, AGUBRA V, XIAO Xing-cheng, ALCOUTLABIT M. Graphene-based nanocomposites for energy storage [J]. Advanced Energy Materials, 2016, 6(16): 1502159. DOI: 10.1002/aenm.201502159.Google Scholar
  21. [21]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, LV Xue-yan, AN Chun-yang, MA Guo-fu, LEI Zi-qiang. Facile and rapid synthesis of Sb203/CNTs/rGo nanocomposite with excellent sodium storage performances [J]. Materials Letters, 2018, 213: 201–203. DOI: 10.1016/j.matlet.2017.11.059.CrossRefGoogle Scholar
  22. [22]
    DREYER D R, PARK S, BIELAWSKI C W, RUOFF R S. The chemistry of graphene oxide [J]. Chemical Society Reviews, 2010, 39(1): 228–240. DOI: 10.1039/b917103g.CrossRefGoogle Scholar
  23. [23]
    NITHYA C, GOPUKUMAR S. RGO/nano Sb composite: A high performance anode material for Na+ ion batteries and evidence for the formation of nanoribbons from the nano rGo sheet during galvanostatic cycling [J]. Journal of Materials Chemistry A, 2014, 2(27): 10516–10525. DOI: 10.1039/c4ta01324g.CrossRefGoogle Scholar
  24. [24]
    OU Xing, YANG Cheng-hao, XIONG Xun-hui, ZHENG Feng-hua, PAN Qi-chang, JIN Chao, LIU Mei-lin, HUANG K. A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: In situ X-ray diffraction study on a live sodiation/desodiation process [J]. Advanced Functional Materials, 2017, 27(13): 1606242. DOI: 110.1002/adfm.201606242.Google Scholar
  25. [25]
    ZHU Xiao-ming, LI Qian, FANG Yong-jin, LIU Xiao-ling, XIAO Li-fen, AI Xin-ping, YANG Han-xi, CAO Yu-liang. Graphene-modified TiO2 microspheres synthesized by a facile spray-drying route for enhanced sodium-ion storage [J]. Partiele & Partiele Systems Characterization, 2016, 33(8): 545–552. DOI: 10.1002/ppsc.201500216.CrossRefGoogle Scholar
  26. [26]
    HERNANDEZ RENTERO C, VARGA O, CABALLERO A, MORALES J, MARTIN F. Solvothermal-induced 3D graphene networks: Role played by the structural and textural properties on lithium storage [J]. Electrochimica Acta, 2016, 222: 914–920. DOI: 10.1016/j.electacta. 2016. 11.057.CrossRefGoogle Scholar
  27. [27]
    XU Xin, SI Ling, ZHOU Xiao-si, TU Feng-zhang, ZHU Xiao-shu, BAO Jian-chun. Chemical bonding between antimony and ionic liquid-derived nitrogen-doped carbon for sodium-ion battery anode [J]. Journal of Power Sources, 2017, 349: 37–44. DOI: 10.1016/j.jpowsour.2017.03.026.CrossRefGoogle Scholar
  28. [28]
    HU Mei-juan, JIANG Yin-zhu, SUN Wen-ping, WANG Hong-tao, JIN Chuan-hong, MI Yan. Reversible con version -alloying of Sb203 as a high-capacity, high-rate, and durable anode for sodium ion batteries [J]. Acs Applied Materials & Interfaces, 2014, 6(21): 19449–19455. DOI: 10.1021/ am505505m.CrossRefGoogle Scholar
  29. [29]
    DARWICHE A, BODENES L, MADEC L, MONCONDUIT L, MARTINEZ H. Impact of the salts and solvents on the Sei formation in Sb/Na batteries: An Xps analysis [J]. Electrochimica Acta, 2016, 207: 284–292. DOI: 10.1016/ j.electacta.2016.03.089.CrossRefGoogle Scholar
  30. [30]
    SLADKEVICH S, GUN J, PRIKHODCHENKO P V, GUTKIN V, MIKHAYLOV A A, MEDVEDEV A G, TRIPOL' SKAYA T A, LEV O. The formation of a peroxoantimonate thin film coating on graphene oxide (GO) and the influence of the Gupo on its transformation to antimony oxides and elemental antimony [J]. Carbon, 2012, 50(15): 5463–5471. DOI: 10.1016/j.carbon.2012.07.033.CrossRefGoogle Scholar
  31. [31]
    ZHOU Xiao-si, WAN Li-jun, GUO Yu-guo. Sn02 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries [J]. Advanced Materials, 2013, 25(15): 2152–2157. DOI: 10.1002/adma.201300071.CrossRefGoogle Scholar
  32. [32]
    WANG Gui-zhi, FENG Jian-min, DONG Lei, LI Xi-fei, LI De-jun. Porous graphene anchored with Sb/SbOx as sodium-ion battery anode with enhanced reversible capacity and cycle performance [J]. Journal of Alloys and Compounds, 2017, 693: 141–149. DOI: 10.1016/j.jallcom.2016.09.150.CrossRefGoogle Scholar
  33. [33]
    HOU Hong-shuai, YANG Ying-chang, ZHU Yi-rong, JING Ming-jun, PAN Cheng-chi, FANG Lai-bing, SONG Wei-xin, YANG Xu-ming, JI Xiao-bo. An electrochemical study of Sb/acetylene black composite as anode for sodium-ion batteries [J]. Electrochimica Acta, 2014, 146: 328–334. DOI: 10.1016/j.electacta.2014.09.080.CrossRefGoogle Scholar
  34. [34]
    GUO Qi, ZHENG Zhe, GAO Hai-ling, MA Jia, QIN Xue. Sn02/graphene composite as highly reversible anode materials for lithium ion batteries [J]. Journal of Power Sources, 2013, 240(31): 149–154. DOI: 10.1016/j.jpowsour. 2013.03.116.CrossRefGoogle Scholar
  35. [35]
    XUE Ming-zhe, FU Zheng-wen. Electrochemical reaction of lithium with nanostructured thin film of antimony tri oxide [J]. Electrochemistry Communications, 2006, 8(8): 1250–1256. DOI: 10.1016/j.elecom.2006.04.022.CrossRefGoogle Scholar
  36. [36]
    WU Ya-nan, PAN Qi-chang, ZHENG Feng-hua, OU Xing, YANG Cheng-hao, XIONG Xun-hui, LIU Mei-lin, HU Dong-li, HUANG Chun-lai. Sb@C/expanded graphite as high-performance anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2018, 744: 481–486. DOI: 10.1016/j.jallcom.2018.02.049.CrossRefGoogle Scholar
  37. [37]
    WANG Zhen-zhen, QU Jin, HAO Shu-meng, ZHANG Yu-jiao, KONG Fan-qiang, YANG Dong-zhi, YU Zhong-zhen. Sb nanoparticles embedded in nitrogen-doped carbon matrix with tuned voids and interfacial bonds for high-rate lithium storage [J]. ChemElectroChem, 2018, 5(18): 2653–2659. DOI: 10.1002/celc.201800781.CrossRefGoogle Scholar
  38. [38]
    YI Zheng, HAN Qi-Gang, ZAN Ping, WU Yao-ming, CHENG Yong, WANG Li-min. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes [J]. Journal of Power Sources, 2016, 331: 16–21. DOI: 10.1016/j.jpowsour.2016. 09.027.CrossRefGoogle Scholar
  39. [39]
    WANG Gang, XIONG Xun-hui, XIE Dong, LIN Zhi-hua, ZHENG Jie, ZHENG Feng-hua, LI You-peng, LIU Yan-zhen, YANG Cheng-hao, LIU Mei-lin. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries [J]. Journal of Materials Chemistry A, 2018, 6: 24317–24323. DOI: 10.1039/ c8ta09751h.CrossRefGoogle Scholar
  40. [40]
    JIN Ren-cheng, JIANG Hua, WANG Qing-yao, LI Gui-hua, GAO Shan-min. Sb nanoparticles anchored on nitrogen-doped amorphous carbon-coated ultrathin CoSx nanosheets for excellent performance in lithium-ion batteries [J]. Acs Applied Materials & Interfaces, 2017, 9(51): 44494–44502. DOI: 10.102 l/acsami.7b 14280.CrossRefGoogle Scholar
  41. [41]
    ZHOU Xiao-si, DAI Zhi-hu, BAO Jian-chun, GUO Yu-guo. Wet milled synthesis of an Sb/Mwcnt nanocomposite for improved sodium storage [J]. Journal of Materials Chemistry A, 2013, 1: 13727–13731. DOI: 10.1039/C3TA13438E.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina
  2. 2.State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, School of Materials Science and EngineeringLanzhou University of TechnologyLanzhouChina

Personalised recommendations