Journal of Central South University

, Volume 26, Issue 6, pp 1469–1480 | Cite as

Synthesis of spherical tremella-like Sb2O3 structures derived from metal-organic framworks and its lithium storage properties

  • Yu-ming Tan (谭玉明)
  • Xian-hong Chen (陈宪宏)Email author
  • Yi-rong Zhu (朱裔荣)
  • Li-juan Chen (陈丽娟)


A novel spherical tremella-like Sb2O3 was prepared by using metal-organic frameworks (MOFs) method under a mild liquid-phase reaction condition, and was further employed as an anode material for lithium-ion batteries (LIBs). The effect of reaction temperature and time on morphologies of Sb2O3 was studied. The results from SEM and TEM demonstrate that the tremella-like Sb2O3 architecture are composed of numerous nanosheets with high specific surface area. When the tremella-like Sb2O3 was used as LIBs anode, the discharge and charge capacities can achieve 724 and 446 mA.h/g in the first cycle, respectively. Moreover, the electrode retains an impressive high capacity of 275 mA-h/g even after 50 cycles at 20 mA/g, indicating that the material is extremely promising for application in LIBs.

Key words

antimony trioxide spherical tremella-like structure metal organic frameworks anode material lithium-ion batteries 

MOF 衍生的球形银耳状Sb2O3 结构的合成及其储锂性能


在液相反应条件下通过MOFs 制备了一种新颖的球形银耳状的Sb2O3 材料,并将其用作锂离子 电池(LIBs)的负极材料。探究了反应温度和时间对Sb2O3 形貌的影响,通过SEM 和TEM 的结果表明, 银耳状Sb2O3 结构是由许多具有高比表面积的纳米片组成。当银耳状Sb2O3 用作LIBs 负极时,首次放 电和充电容量分别达到724 和446 mA∙h/g。 在20 mA/g 的电流密度下循环50 圈后,电极仍保持275 mA∙h/g 的高容量,因此该材料极有希望应用于LIBs。


三氧化二锑 球形银耳状结构 金属有机框架材料 负极材料 锂离子电池 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    JI Li-wen, LIN Zhan, ALCOUTLABI M, ZHANG Xiang-wu. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries [J]. Energy Environmental Science, 2011, 4(8): 2682–2699.CrossRefGoogle Scholar
  2. [2]
    WU Hao-bin, CHEN Jun-song, HNG Huey-hoon, LOU Xiong-wen. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries [J]. Nanoscale, 2012, 4(8): 2526–2542.CrossRefGoogle Scholar
  3. [3]
    SHI Chong-fu, XIANG Kai-xiong, ZHU Yi-rong, CHEN Xian-hong, ZHOU Wei, CHEN Han. Preparation and electrochemical properties of nanocable-like Nb2O5/ surface-modified carbon nanotubes composites for anode materials in lithium ion batteries [J]. Electrochimecal Acta, 2017, 246: 1088–1096.CrossRefGoogle Scholar
  4. [4]
    LONG Zhao-hui, DING Jing, DENG Bo-hua, GONG Jin, LI Xiao-bo, YIN Fu-cheng. First-principle study of Li-insertion properties of NiSi2 as anode materials for lithium-ion batteries [J]. Journal of Central South University, 2018, 49(2): 323–329.Google Scholar
  5. [5]
    ZHOU Hong-ming, GENG Wen-jun, LI Jian. LiPF6 and lithium difluoro (oxalate) borate/ethylene carbonate+ dimethyl carbonate+ethyl (methyl) carbonate electrolyte for LiNio.5Mn1.5O4 cathode [J]. Journal of Central South University, 2017, 24: 1013–1018.CrossRefGoogle Scholar
  6. [6]
    LI N, LIAO S, SUN Y, SONG H W, WANG C X. Uniformly dispersed self-assembled growth of Sb203/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability [J]. Journal of Materials Chemistry A, 2015, 3(11): 5820–5828.CrossRefGoogle Scholar
  7. [7]
    NAM D G, HONG K S, LIM S J, KIM M J, KWON H S. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries [J]. Small, 2015, 11(24): 2885–2892.CrossRefGoogle Scholar
  8. [8]
    WU Feng-dan, WANG Yong, TANG Jun-jun. Microwave-assisted synthesis of antimony oxide nanostructures and their electrochemical properties [J]. Materials Science Forum, 2010, 650: 157–162.CrossRefGoogle Scholar
  9. [9]
    ZHOU Jing, ZHENG Cai-hong, WANG Hua, YANG Jie, HU Peng-fei, GUO Lin. 3D nest-shaped Sb/Sb2O3/RGO composite based high-performance lithium-ion batteries [J]. Nanoscale, 2016, 8(39): 17131–17135.CrossRefGoogle Scholar
  10. [10]
    ZHOU Xiao-si, LIU Xia, XU Yan, LIU Yun-xia, DAI Zhi-hui, BAO Jian-chun. An SbOx/reduced graphene oxide composite as a high-rate anode material for sodium-ion batteries [J]. Journal of Physical Chemistry C, 2014, 118(41): 23527–23534.CrossRefGoogle Scholar
  11. [11]
    XUE Ming-zhe, FU Zheng-wen. Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide [J]. Electrochemical Communications, 2006, 8(8): 1250–1256.CrossRefGoogle Scholar
  12. [12]
    SIMONIN L, LAFONT U, TABRIZI N, SCHMIDT-OTT A, KELDER E-M. Sb/O nano-composites produced via spark discharge generation for Li-ion battery anodes [J]. Journal Power Sources, 2007, 174(2): 805–809.CrossRefGoogle Scholar
  13. [13]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, XU Xiao-hu, YAN Jian, MA Guo-fu, LEI Zi-qiang. Anchoring Sb6O13 nanocrystals on graphene sheets for enhanced lithium storage [J]. ACS Applied Materials Interfaces, 2016, 8(51): 35398–35406.CrossRefGoogle Scholar
  14. [14]
    HE Meng, KRAVCHYK K, WALTER M, KOVALENKO M V. Antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: Nano versus bulk [J]. Nano Letters, 2014, 14(3): 1255–1262.CrossRefGoogle Scholar
  15. [15]
    HU Xing-yun, KONG Ling-hao, HE Meng-chang. Kinetics and mechanism of photopromoted oxidative dissolution of antimony trioxide [J]. Environment Science Technology, 2014, 48(24): 14266–14272.CrossRefGoogle Scholar
  16. [16]
    BRYNGELSSON H, ESKHULT J, NYHOLM L, HERRANEN M, ALM O, EDSTRÖM K. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries [J]. Chemistry of Materials, 2007, 19(5): 1170–1180.CrossRefGoogle Scholar
  17. [17]
    DENG Zheng-tao, CHEN Dong, TANG Fang-qiong, MENG Xian-wei, REN Jun, ZHANG Lin. Orientated attachment assisted self-assembly of Sb/Sb2O3 nanorods and nanowires: End-to-end versus side-by-side [J]. Journal of Physical Chemistry C, 2007, 111(14): 5325–5330.CrossRefGoogle Scholar
  18. [18]
    WANG Gui-zhi, FENG Jian-min, DONG Lei, LI Xi-fei, LI De-jun. Antimony (IV) oxide nanorods/reduced graphene oxide as the anode material of sodium-ion batteries with excellent electrochemical performance [J]. Electrochimistry Acta, 2017, 240: 203–214.CrossRefGoogle Scholar
  19. [19]
    LI Bin-jie, XU Xiang-min, ZHAO Yan-bao, ZHANG Zhi-jun. Fabrication of Sb/Sb2O3 nanobelt bundles via a facile ultrasound-assisted room temperature liquid phase chemical route and evaluation of their optical properties [J]. Materials Research Bulletin, 2013, 48(3): 1281–1287.CrossRefGoogle Scholar
  20. [20]
    LI Wei, WANG Kang-li, CHENG Shi-jie, JIANG Kai. A two-dimensional hybrid of SbOx nanoplates encapsulated by carbon flakes as a high performance sodium storage anode [J]. Journal of Materials Chemistry A, 2017, 5(3): 1160–1167.CrossRefGoogle Scholar
  21. [21]
    DENG Ming-xiang, LI Si-jie, HONG Wan-wan, JIANG Yun-ling, XU Wei, SHUAI Hong-lei, ZOU Guo-qiang, HU Yun-chu, HOU Hong-shuai, WANG Wen-lei, JI Xiao-bo. Octahedral Sb/Sb2O3 as high-performance anode for lithium and sodium storage [J]. Materials Chemistry and Physics, 2019, 223: 46–52CrossRefGoogle Scholar
  22. [22]
    KIBSGAARD J, CHEN Zhe-bo, REINECKE B N, JARAMILLO T F. Engineering the surface structure of M0S2 to preferentially expose active edge sites for electrocatalysis [J]. Nature Materials, 2012, 11(11): 963–969.CrossRefGoogle Scholar
  23. [23]
    WU Ren-bing, QIAN Xu-kun, YU Feng, LIU Hai, ZHOU Kun, WEI Jun, HUANG Yi-zhong. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials [J]. Journal of Materials Chemistry A, 2013, 1: 11126–11129.CrossRefGoogle Scholar
  24. [24]
    SO MONICA C, WIEDERRECHT G P, MONDLOCH J E, HUPP J T, FARHA O K. Metal-organic framework materials for light-harvesting and energy transfer [J]. Chemical Communications, 2015, 51(17): 3501–3510.CrossRefGoogle Scholar
  25. [25]
    TAN Yu-ming, CHEN Li-juan, CHEN Han, HOU Qing-lin, CHEN Xian-hong. Synthesis of a symmetric bundle-shaped Sb/Sb2O3 and its application for anode materials in lithium ion batteries [J]. Materials Letters, 2018, 212: 103–106.CrossRefGoogle Scholar
  26. [26]
    WANG Lu, HAN Yu-zhen, FENG Xiao, ZHOU Jun-wen, QI Peng-fei, WANG Bo. Metal-organic frameworks for energy storage: Batteries and supercapacitors [J]. Coordination Chemistry Reviews, 2016, 307: 361–381.CrossRefGoogle Scholar
  27. [27]
    HE Han-na, HUANG Dan, TANG You-gen, WANG Qi, JI Xiao-bo, WANG Hai-yan, GUO Zai-ping. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage [J]. Nano Energy, 2019, 57: 728–736.CrossRefGoogle Scholar
  28. [28]
    DONG Shi-hua, LI Cai-xia, GE Xiao-li, LI Zhao-qiang, MIAO Xian-guang, YIN Long-wei. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries [J]. ACS Nano, 2017, 11(6): 6474–6482.CrossRefGoogle Scholar
  29. [29]
    ZHU Zhi-qiang, WANG Shi-wen, DU Jing, JIN Qi, ZHANG Tian-ran, CHENG Fang-yi, CHEN Jun. Ultrasmail Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries [J]. Nano Letters, 2013, 14(1): 153–157.CrossRefGoogle Scholar
  30. [30]
    ZHANG Lei, WU Hao-bin, MADHAVI S, HNG H H, LOU Xiong-wen (David). Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties [J]. Journal of the American Chemical Society, 2012, 134: 17388–17391.CrossRefGoogle Scholar
  31. [31]
    KANG Wen-pei, TANG Yong-bing, LI Wen-yue, YANG Xia, XUE Hong-tao, YANG Qing-dan, LEE Chun-sing. High interfacial storage capability of porous NiMn2O4/C hierarchical tremella-like nanostructures as the lithium ion battery anode [J]. Nanoscale, 2015, 7(1): 225–231.CrossRefGoogle Scholar
  32. [32]
    LIU Hai-yan, ZHANG Wei, SONG Huai-he, CHEN Xiao-hong, ZHOU Ji-sheng, MA Zhao-kun. Tremella-like graphene/polyaniline spherical electrode material for supercapacitors [J]. Electrochimistry Acta, 2014, 146: 511–517.CrossRefGoogle Scholar
  33. [33]
    WANG Qian, YAN Jun, WANG Yan-bo, WEI Tong, ZHANG Mi-lin, JING Xiao-yan, FAN Zhuang-jun. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors [J]. Carbon, 2014, 67(2): 119–127.CrossRefGoogle Scholar
  34. [34]
    LIU Hui, ZHANG Fan, LI Wen-yue, ZHANG Xiao-long, LEE Chun-sing, WANG Wen-lou, TANG Yong-bing. Porous tremella-like MoS2/polyaniline hybrid composite with enhanced performance for lithium-ion battery anodes [J]. Electrochimistry Acta, 2015, 167: 132–138.CrossRefGoogle Scholar
  35. [35]
    ZHANG Rui, LI Hui-yong, SUN Dan, LUAN Jing-yi, HUANG Xiao-bing, TANG You-gen, WANG Hai-yan. Facile preparation of robust porous M0S2/C nanosheet networks as anode material for sodium ion batteries [J]. Journal of Materials Science, 2019, 54(3): 2472–2482.CrossRefGoogle Scholar
  36. [36]
    ZENG H C. Vapour phase growth of orthorhombic molybdenum trioxide crystals at normal pressure of purified air [J]. Journal of Crystal Growth, 1998, 186: 393–402.CrossRefGoogle Scholar
  37. [37]
    ZHANG Zao-li, GUO Lin, WANG Wen-dong. Synthesis and characterization of antimony oxide nanoparticles [J]. Journal of Materials Research, 2001, 16(3): 803–805.CrossRefGoogle Scholar
  38. [38]
    WU Ren-bing, QIAN Xu-kun, RUI Xian-hong, LIU Hai, YADIAN Bo-luo, ZHOU Kun, WEI Jun, YAN Qing-yu, FENG Xi-qiao, LONG Yi, WANG Liu-ying, HUANG Yi-zhong. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability [J]. Small, 2014, 10(10): 1932–1938.CrossRefGoogle Scholar
  39. [39]
    PHAN A, DOONAN C J, URIBE-ROMO F J, KNOBLER C B, O'KEEFFE M, YAGHI O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks [J]. Accounts of Chemical Research, 2010, 43(1): 58–67.CrossRefGoogle Scholar
  40. [40]
    HU Ling-ling, QU Bai-hua, CHEN Li-bao, LI Qiu-hong. Low-temperature preparation of ultrathin nanoflakes assembled tremella-like NiO hierarchical nanostructures for high-performance lithium-ion batteries [J]. Materials Letters, 2013, 108:92–95.CrossRefGoogle Scholar
  41. [41]
    YI Zheng, HAN Qi-gang, LI Xiang, WU Yao-ming, CHENG Yong, WANG Li-min. Two-step oxidation of bulk Sb to one-dimensional Sb2O4 submicron-tubes as advanced anode materials for lithium-ion and sodium-ion batteries [J]. Chemical Engineering Journal, 2017, 315: 101–107.CrossRefGoogle Scholar
  42. [42]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, LU Xiao-fang, LV Xue-yan, MA Guo-fu, WANG Qing-tao, LEI Zi-qiang. Sb2O3 nanoparticles anchored on graphene sheets via alcohol dissolution-reprecipitation method for excellent lithium storage properties [J]. ACS Applied Materials Interfaces, 2017,9:34927–34936.CrossRefGoogle Scholar
  43. [43]
    SUN Qian, REN Qin-qi, LI Hong, FU Zheng-wen. High capacity Sb2O4 thin film electrodes for rechargeable sodium battery [J]. Electrochemistry Communications, 2011, 13(12): 1462–1464.CrossRefGoogle Scholar
  44. [44]
    LV Hai-long, QIU Song, LU Gui-xia, FU Ya, LI Xiao-yu, HU Chen-xi, LIU Jiu-rong. Nanostructured antimony/carbon composite fibers as anode material for lithium-ion battery [J]. ElectrochimistryActa, 2015, 151: 214–221.CrossRefGoogle Scholar
  45. [45]
    ZHOU Xiao-zhong, ZHANG Zheng-feng, WANG Jian-wen, WANG Qing-tao, MA Guo-fu, LEI Zi-qiang. Sb2O4/reduced graphene oxide composite as high-performance anode material for lithium ion batteries [J]. Journal of Alloys and Compounds, 2017, 699: 611–618.CrossRefGoogle Scholar
  46. [46]
    HU Ling-yun, ZHU Xiao-shu, DU Yi-chen, LI Ya-fei, ZHOU Xiao-si, BAO Jian-chun. A chemically coupled antimony/ multilayer graphene hybrid as a high-performance anode for sodium-ion batteries [J]. Chemistry of Materials, 2015, 27(23): 8138–8145.CrossRefGoogle Scholar
  47. [47]
    HOU Hong-shuai, JING Ming-jun, YANG Ying-chang, ZHU Yi-rong, FANG Lai-bing, SONG Wei-xin, PAN Cheng-chi, YANG Xu-ming, JI Xiao-bo. Sodium/lithium storage behavior of antimony hollow nanospheres for rechargeable batteries [J]. ACS Applied Materials Interfaces, 2014, 6(18): 16189–16196.CrossRefGoogle Scholar
  48. [48]
    ZHANG Yan-dong, XIE Jian, ZHU Tie-jun, CAO Gao-shao, ZHAO Xin-bing, ZHANG Shi-chao. Activation of electrochemical lithium and sodium storage of nanocrystalline antimony by anchoring on graphene via a facile in situ solvothermal route [J]. Journal of Power Sources, 2014, 247(3): 204–212.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Metallurgy and Materials EngineeringHunan University of TechnologyZhuzhouChina

Personalised recommendations