Advertisement

Journal of Central South University

, Volume 26, Issue 6, pp 1416–1425 | Cite as

Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes

  • Yi-feng Huo (霍一峰)
  • Ning Qin (秦宁)
  • Cheng-zhu Liao (廖成竹)
  • Hui-fen Feng (冯慧芬)
  • Ying-ying Gu (古映莹)
  • Hua Cheng (程化)Email author
Article

Abstract

Ultrafine cube-shape Ce2Sn2O7 nanoparticles crystallized in pure pyrochlore phase with a size of about 10 nm have been successfully synthesized by a facile hydrothermal method. Conditional experiments have been conducted to optimize the processing parameters including temperature, pH, reaction duration, precipitator types to obtain phase-pure Ce2Sn2O7. The crystal structure, morphology and sizes and specific surface area have been characterized by X-ray diffractometer (XRD), Raman spectrum, transmission electron microscope (TEM), high resolution transmission electron microscope (HRTEM), and Brunauer-Emmett-Teller (BET). The as-synthesized Ce2Sn2O7 ultrafine nanocubes have been evaluated as electrode materials for pseudo-capacitors and lithium ion batteries. When testing as supercapacitors, a high specific capacitance of 222 F/g at 0.1 A/g and a good cycling stability with a capacitance retention of higher than 86% after 5000 cycle have been achieved. When targeted for anode material for lithium ion batteries, the nanocubes deliver a high specific reversible capacity of more than 900 mA∙h/g at 0.05C rate. The rate capability and cycling performance is also very promising as compared with the traditional graphite anode.

Keywords

supercapacitors lithium ion batteries composite oxides ultrafine nanoparticles hydrothermal pyrochlore 

超细 Ce2Sn2O7 纳米立方 晶体的水热合成 与储能性能

摘要

采用简单水热法合成了尺寸为10 nm 左右的纯烧绿石相超细Ce2Sn2O7 立方晶体。通过优化温 度、pH、反应时间、前驱体类型等参数获得最佳实验条件。通过X 射线衍射仪、拉曼光谱、透射电 子显微镜、高分辨透射电子显微镜和BET 等表征技术对样品的晶体结构、形貌、尺寸和比表面积进 行表征。将制备的Ce2Sn2O7 超细纳米立方晶体用作电极材料,并通过超级电容器和锂离子电池对其性 能进行评估。将其应用于超级电容器,在 0.1 A/g 下具有 222 F/g 的高比电容,并且在5000 次循环后 仍具有良好的循环稳定性,电容保持率高于86%。将其用于锂离子电池负极材料时,在0.05C 倍率下 具有超过900 mA∙h/g 的高电池容量。与传统的石墨阳极相比,其倍率性能和循环性能呈现出较好的应 用前景。

关键词

超级电容器 锂离子电池 复合氧化物 超细纳米晶 水热法 烧绿石 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    CONWAY B E, PELL W G. Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J]. Journal of Solid State Electrochemistry, 2003, 7(9): 637–644.CrossRefGoogle Scholar
  2. [2]
    HU J, LI M C, LV F C, YANY M Y, TAO P P, TANG Y G, LIU H T, LU Z G. Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors [J]. Journal of Power Sources, 2015, 294: 120–127.CrossRefGoogle Scholar
  3. [3]
    SIMON P, GOGOTSI Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7: 845–854.CrossRefGoogle Scholar
  4. [4]
    CHENG H, LU Z G, DENG J Q, CHUNG C Y, ZHANG K L, LI Y Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes [J]. Nano Research, 2010, 3: 895–901.CrossRefGoogle Scholar
  5. [5]
    LIAN J, WANG L M, WANG S X, CHEN J, BOATNER L A, EWING R C. Nanoscale manipulation of pyrochlore: New nanocomposite ionic conductors [J]. Physical Review Letters, 2001, 87: 145901.CrossRefGoogle Scholar
  6. [6]
    ZHAO J H, KUNKEL H P, ZHOU X Z, WILLIAMS G W, SUBRAMANIAN M A. Critical behavior of the magnetoresistive pyrochlore Tl2Mn2O7 [J]. Physical Review Letters, 1999, 83: 219–222.CrossRefGoogle Scholar
  7. [7]
    LUTIQUE S, KONINGS R J M, RONDINELLA V V, SOMERS J, WISS T. The thermal conductivity of Nd2Zr2O7 pyrochlore and the thermal behaviour of pyrochlore-based inert matrix fuel [J]. Journal of Alloys and Compounds, 2003, 352: 1–5.CrossRefGoogle Scholar
  8. [8]
    NAG A, DASGUPTA P, JANA Y M, GHOSH D. A study on crystal field effect and single ion anisotropy in pyrochlore europium titanate (Eu2Ti2O7) [J]. Journal of Alloys and Compounds, 2004, 384: 6–11.CrossRefGoogle Scholar
  9. [9]
    SOHN J M, KIM M R, WOO S I. The catalytic activity and surface characterization of Ln2B2O7 (Ln=Sm, Eu, Gd and Tb; B=Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst [J]. Catalysis Today, 2003, 83: 289–297.CrossRefGoogle Scholar
  10. [10]
    ALI N, HILL P, ZHANG X, WILLIS F. Magnetization and thermoremanent magnetization of Tb2Mo2O7 and Y2Mo2O7 spin glasses [J]. Journal of Alloys and Compounds, 1992, 181: 281–285.CrossRefGoogle Scholar
  11. [11]
    YANG M Y, CHENG H, GU Y Y, SUN Z F, HU J, CAO L J, LV F C, LI M C, WANG W X, WANG Z Y, WU S F, LIU H T, LU Z G. Facile electro-deposition of 3D concentration-gradient Ni-Co hydroxide nanostructures on nickel foam as high performance electrodes for asymmetric supercapacitors [J]. Nano Research, 2015, 8(8): 2744–2754.CrossRefGoogle Scholar
  12. [12]
    SHARMA N, SUBBA R G V, CHOWDARI B V R. Anodic properties of tin oxides with pyrochlore structure for lithium ion batteries [J]. Journal of Power Sources, 2006, 159: 340–344.CrossRefGoogle Scholar
  13. [13]
    MIMS C A, JACOBSON A J, HALL R B, LEWANDOSKI J T. Methane oxidative coupling over nonstoichiometric bismuth-tin pyrochlore catalysts [J]. Journal of Catalysis, 1995, 153: 197–207.CrossRefGoogle Scholar
  14. [14]
    CHENG H, WANG L P, LU Z G. A general aqueous sol-gel route to Ln2Sn2O7 nanocrystals [J]. Nanotechnology, 2008, 19: 025706.CrossRefGoogle Scholar
  15. [15]
    YU T H, TULLER H L. Ionic conduction and disorder in the Gd2Sn2O7 pyrochlore system [J]. Solid State Ionics, 1996, 86-88: 177–182.CrossRefGoogle Scholar
  16. [16]
    PORAT O, HEREMANS C, TULLER H L. Stability and mixed ionic electronic conduction in Gd2(Ti1−xMox)2O7 under anodic conditions [J]. Solid State Ionics, 1997, 94: 75–83.CrossRefGoogle Scholar
  17. [17]
    SICKAFUS K E, MINERVINI L, GRIMES R W, VALDEZ J A, ISHIMARU M, LI F, MCCLELLAN K J, HARTMANN T. Radiation tolerance of complex oxides [J]. Science, 2000, 289: 748–751.CrossRefGoogle Scholar
  18. [18]
    LI K W, WANG H, HUI Y. Hydrothermal preparation and photocatalytic properties of Y2Sn2O7 nanocrystals [J]. Journal of Molecular Catalysis A: Chemical, 2006, 249: 65–70.CrossRefGoogle Scholar
  19. [19]
    TOLLA B, DEMOURGUES A, POUCHARD M, RABARAEL L, FOURNES L, WATTIAUX A. Oxygen exchange properties in the new pyrochlore solid solution Ce2Sn2O7-Ce2Sn2O8 [J]. Comptes Rendus de l' Academie des Sciences Serie IIc: Chemie, 1999, 2: 139–146.CrossRefGoogle Scholar
  20. [20]
    ISMUMANDAR KENNEDY B J, HUNTER B A, VOGT T. Bonding and structural variations in doped Bi2Sn2O7 [J]. Journal of Solid State Chemistry, 1997, 131: 317–325.CrossRefGoogle Scholar
  21. [21]
    WANG S W, LU M K, ZHOU G J, ZHOU Y Y, ZHANG H P, WANG S F, YANG Z S. Synthesis and luminescence properties of La2−xRExSn2O7 (RE=Eu and Dy) Phosphor nanoparticles [J]. Materials Science and Engineering: B, 2006, 133: 231–234.CrossRefGoogle Scholar
  22. [22]
    MOON J, AWANO M, MAEDA K. Hydrothermal synthesis and formation mechanisms of lanthanum tin pyrochlore oxide [J]. Journal of the American Ceramic Society, 2001, 84: 2531–2536.CrossRefGoogle Scholar
  23. [23]
    LU Z G, WANG J W, TANG Y G, LI Y D. Synthesis and photoluminescence of Eu3+-doped Y2Sn2O7 nanocrystals [J]. Journal of Solid State Chemistry, 2004, 177: 3075–3079.CrossRefGoogle Scholar
  24. [24]
    ZHU H L, JIN D L, ZHU L M, YANG H, YAO K H, XI Z Q. A General hydrothermal route to synthesis of nanocrystalline lanthanide stannates: Ln2Sn2O7 (Ln=Y, La-Yb) [J]. Journal of Alloys and Compounds, 2008, 464: 508–513.CrossRefGoogle Scholar
  25. [25]
    ZENG J, WANG H, ZHANG Y C, ZHU M K, YAN H. Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes [J]. Journal of Physical Chemistry C, 2007, 111: 11879–11887.CrossRefGoogle Scholar
  26. [26]
    HUANG H, MIAO X, LIAO N, WANG L C, JIN D L. Study on the oxygen exchange capacities of Ce2Sn2O7 pyrochlore [J]. Russian Journal of Inorganic Chemistry, 2011, 56: 1621–1624.CrossRefGoogle Scholar
  27. [27]
    YANG J Y, SU Y C, LIU X Y. Hydrothermal synthesis, characterization and optical properties of La2Sn2O7: Eu3+ micro-octahedra [J]. Transactions of Nonferrous Metals Society of China, 2011, 21: 535–543.CrossRefGoogle Scholar
  28. [28]
    GLERUP M, NIDLSEN O F, POULSEN F W. The structural transformation from the pyrochlore structure, A2B2O7, to the fluorite structure, AO2, studied by Raman spectroscopy and defect chemistry modeling [J]. Journal of Solid State Chemistry, 2001, 160: 25–32.CrossRefGoogle Scholar
  29. [29]
    WU S F, WANG W X, Li M C, CAO L J, LV F C, YANG M Y, WANG Z Y, SHI Y, NAN B, YU S C, SUN Z F, LIU Y, LU Z G. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate [J]. Nature Communications, 2016, 7: 13318.CrossRefGoogle Scholar
  30. [30]
    GUPTA H C, BROWN S, RANI N, GOHEL V B. A lattice dynamical investigation of the Raman and the infrared frequencies of the cubic A2Sn2O7 pyrochlores [J]. International Journal of Inorganic Materials, 2001, 3: 983–986.CrossRefGoogle Scholar
  31. [31]
    VANDENBORRE M T, HUSSON E, CHATRY J P, MICHEL D. Rare-earth titanates and stannates of pyrochlore structure; vibrational spectra and force fields [J]. Journal of Raman Spectroscopy, 1983, 14: 63–71.CrossRefGoogle Scholar
  32. [32]
    XU M W, KONG L B, ZHOU W J, LI H L. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins [J]. The Journal of Physical Chemistry C, 2007, 111: 19141–19147.CrossRefGoogle Scholar
  33. [33]
    TOUPIN M, BROUSSE T, BELANGER D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor [J]. Chemistry of Materials, 2004, 16: 3184–3190.CrossRefGoogle Scholar
  34. [34]
    LI F H, SONG J F, YANG H F, GAN S Y, ZHANG Q X, HAN D X, ARILVASKA LI N. One-step synthesis of Graphene/SnO2 nanocomposites and its application in electrochemical supercapacitors [J]. Nanotechnology, 2009, 20: 455602.CrossRefGoogle Scholar
  35. [35]
    PANG S C, ANDERSON M A, CHAPMAN T W. Novel electrode materials for thin-film ultracapacitors: Comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide [J]. Journal of the Electrochemical Society, 2000, 147: 444–450.CrossRefGoogle Scholar
  36. [36]
    SUBRAMANIAN V, ZHU H W, VAJTAI R, AJAYAN P M, WEI B Q. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures [J]. The Journal of Physical Chemistry B, 2005, 109: 20207–20214.CrossRefGoogle Scholar
  37. [37]
    LEE H Y, GOODENOUGH J B. Supercapacitor behavior with KCl electrolyte [J]. Journal of Solid State Chemistry, 1999, 144: 220–223.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenChina
  2. 2.Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations