Advertisement

Journal of Central South University

, Volume 26, Issue 6, pp 1387–1401 | Cite as

Preparation and application of perovskite-type oxides for electrocatalysis in oxygen/air electrodes

  • Shu-xin Zhuang (庄树新)Email author
  • Jia-yi He (何佳怡)
  • Wei-peng Zhang (张伟鹏)
  • Nan Zhou (周南)
  • Mi Lu (路密)
  • Ji-qiong Lian (廉冀琼)
  • Jing-jing Sun (孙婧婧)
Review
  • 31 Downloads

Abstract

Recent advances in the preparation and application of perovskite-type oxides as bifunctional electrocatalysts for oxygen reaction and oxygen evolution reaction in rechargeable metal-air batteries are presented in this review. Various fabrication methods of these oxides are introduced in detail, and their advantages and disadvantages are analyzed. Different preparation methods adopted have great influence on the morphologies and physicochemical properties of perovskite-type oxides. As a bifunctional electrocatalyst, perovskite-type oxides are widely used in rechargeable metal-air batteries. The relationship between the preparation methods and the performances of oxygen/air electrodes are summarized. This work is concentrated on the structural stability, the phase compositions, and catalytic performance of perovskite-type oxides in oxygen/air electrodes. The main problems existing in the practical application of perovskite-type oxides as bifunctional electrocatalysts are pointed out and possible research directions in the future are recommended.

Key words

perovskite-type oxides electrocatalyst preparation oxygen/air electrode 

钙钛矿型氧化物的制备及其在氧/空气双功能电极中的应用

摘要

本文综述了近期钙钛矿型氧化物在氧/空气电极中作为氧还原和氧析出双功能电催化剂的制备方 法。详细地介绍了各种制备方法并对其优缺点进行比较分析,发现不同的制备方法对钙钛矿型氧化物 的形貌和物理化学性能的影响很大。钙钛矿型氧化物作为双能电催化剂被广泛应用于金属-空气电池 中,归纳了其制备方法与电催化性能之间的关系。在氧/空气电极应用中,重点讨论了影响钙钛矿型氧 化物的结构稳定性、相组成和电催化活性的因素,指出了其作为双功能电催化剂在实际应用中存在的 主要问题,并对今后的研究方向进行预测。

关键词

钙钛矿型氧化物 电催化剂 制备方法 氧/空气电极 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    TANAKA H, MISONO M. Advances in designing perovskite catalysts [J]. Curr Opin Solid State Mater Sci, 2001, 5: 381–387. DOI: 10.1016/S1359-0286(01)00035-3.CrossRefGoogle Scholar
  2. [2]
    CHEN Xiao-hua, HU Jian-qiang, CHEN Zhi-wu, FENG Xiu-mei, LI Ai-qing. Nanoplated bismuth titanate submicrospheres for protein immobilization and their corresponding direct electrochemistry and electrocatalysis [J]. Biosens Bioelectron, 2009, 24: 3448–3454. DOI: 10.1016/j.bios.2009.04.037.CrossRefGoogle Scholar
  3. [3]
    LI S, NECHACHE R, DAVALOS I A V, GOUPIL G, NIKOLOVA L, NICKLAUS M, LAVERDIERE J, RUEDIGER A, ROSEI F. Ultrafast microwave hydrothermal synthesis of BiFeO3 nanoplates [J]. J Am Ceram Soc, 2013, 96: 3155–3162. DOI: 10.1111/jace.12473.Google Scholar
  4. [4]
    LENG Jing, LI Shuang, WANG Zhong-shan, XUE Yan-feng, XU Da-peng. Synthesis of ultrafine lanthanum ferrite (LaFeO3) fibers via electrospinning [J]. Mater Lett, 2010, 64: 1912–1914. DOI: 10.1016/j.matlet.2010.06.005.CrossRefGoogle Scholar
  5. [5]
    LI S, KATO R, WANG Q, YAMANAKA T, TAKEGUCHI T, UEDA W. Soot trapping and combustion on nanofibrous perovskite LaMnO3 catalysts under a continuous flow of soot [J]. Appl Catal B: Environ, 2010, 93: 383–386. DOI: 10.10 16/j.apcatb.2009.10.012.CrossRefGoogle Scholar
  6. [6]
    ZHU Xin-hua, LIU Zhi-guo, MING Nai-ben. Perovskite oxide nanotubes: Synthesis, structural characterization, properties and applications [J]. J Mater Chem, 2010, 20: 4015–4030. DOI: 10.1039/b923119f.Google Scholar
  7. [7]
    WANG J, MANIVANNAN A, WU N. Sol-gel derived La0.6Sr0.4CoO3 nanoparticles, nanotubes, nanowires and thin films [J]. Thin Solid Films, 2008, 517: 582–587. DOI: 10.1016/j.tsf.2008.06.095.CrossRefGoogle Scholar
  8. [8]
    CHEN X, TANG Y, FANG L, ZHANG H, HU C, ZHOU H. Self-assembly growth of flower-like BiFeO3 powders at low temperature [J]. J Mater Sci: Mater Electron, 2012, 23: 1500–1503. DOI: 10.1007/s10854-011-0617-1.Google Scholar
  9. [9]
    WANG Wan-jun, BI Jin-hong, WU Ling, LI Zhao-Hui, FU Xian-zhi. Hydrothermal synthesis and catalytic performances of a new photocatalyst CaSnO3 with microcube morphology [J]. Scripta Mater, 2009, 60: 186–189. DOI: 10.1016/ j.scriptamat.2008.10.001.CrossRefGoogle Scholar
  10. [10]
    DENG Ji-guang, ZHANG Lei, DAI Hong-xing, AU Chaktong. A Study on the relationship between low-temperature reducibility and catalytic performance of single-crystalline La0.6Sr0.4MnO3+δ microcubes for toluene combustion [J]. Catal Lett, 2009, 130: 622–629. DOI: 10.1007/s10562-009-9901-6.CrossRefGoogle Scholar
  11. [11]
    NAKASHIMA K, KERA M, FUJII I, WADA S. A new approach for the preparation of SrTiO3 nanocubes [J]. Ceram Int, 2013, 39: 3231–3234. DOI: 10.1016/j.ceramint.2012.10. 009.CrossRefGoogle Scholar
  12. [12]
    LAMMINEN J, KIVISAARI J, LAMPINEN M J, VIITANEN M, VUORISALO J. Preparation of air electrodes and long run tests [J]. J Electrochem Soc, 1991, 138: 905–908. DOI: 10.1149/1.2085745.CrossRefGoogle Scholar
  13. [13]
    XIA Xi, PAN Cun-xin. Peparation and characteristics of nanophase LaCoyMn1-YO3 by solid state reaction [J]. Chinese Journal of Applied Chemistry, 2001, 18: 96–99. http://yyhx.ciac.jl.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=8799. (in Chinese)Google Scholar
  14. [14]
    WANG Kai-tuo, WU Xue-hang, WU Wen-wei, LI Yong-ni, LIAO Sen. Synthesis of perovskite LaCoO3 by thermal decomposition of oxalates: Phase evolution and kinetics of the thermal transformation of the precursor [J]. Ceram Int, 2014, 40: 5997. DOI: 10.1016/j.ceramint.2013.11.048.CrossRefGoogle Scholar
  15. [15]
    FARHADI S, SEPAHVAND S. Microwave-assisted solidstate decomposition of Laai][Co(CN)6]·5H2O precursor: A simple and fast route for the synthesis of single-phase perovskite-type LaCoO3 nanoparticles [J]. J Alloy Compd, 2010, 489: 586–591. DOI: 10.1016/j.jallcom.2009.09.117.CrossRefGoogle Scholar
  16. [16]
    SCHAAK R E, MALLOUK T E. Perovskites by design: A toolbox of solid-state reactions [J]. Chem Mater, 2002, 14: 1455–1471. DOI: 10.1021/cm010689m.CrossRefGoogle Scholar
  17. [17]
    RUDSKAYA A G, PUSTOVAYA L E, KOFANOVA N B, KUPRIYANOV M F. Specific features of La1-xMnO3 solid state synthesis [J] J Struct Chem, 2005, 46: 647–651. DOI: 10.1007/s10947-006-0183-1.CrossRefGoogle Scholar
  18. [18]
    BHELLA S S, KUTI L M, LI Q, THANGADURAI V. Electrical transport properties of In-doped Ce1-xInxO2-δ (x=0.1; 0.2) [J]. Dalton Trans, 2009: 9520–9528. DOI: 10.1039/ B910335J.Google Scholar
  19. [19]
    ISUPOVA L A, ALIKINA G M, TSYBULYA S V, BOLDYREVA N N, KRYUKAVA G N, YAKAVLEVA I S, ISUPOV V P, SADYKOV V A. Real structure and catalytic activity of La1-xSrxCoO3 perovskites [J]. Int J Inorg Mater, 2001, 3: 559–562. DOI: 10.1016/S1466-6049(01)00062-9.CrossRefGoogle Scholar
  20. [20]
    WONG Y J, HASSAN J, HASHIM M. Dielectric properties, impedance analysis and modulus behavior of CaTiO3 ceramic prepared by solid state reaction [J]. J Alloy Compd, 2013, 571: 138–144. DOI: 10.1016/j.jallcom.2013. 03.123.CrossRefGoogle Scholar
  21. [21]
    LIU Lai-jun, ZHENG Shao-ying, HUANG Rui-jing, SHI Dan-ping, HUANG Yan-min, WU Shuang-shuang, LI Yun-hua, FANG Liang, HU Chang-zheng. Na0.5K0.5NbO3 and 0.9Na0.5K0.5NbO3–0.1Bi0.5Na0.5TiO3 nanocrystalline powders synthesized by low-temperature solid-state reaction [J]. Adv Powder Technol, 2013, 24: 908–912. DOI: 10.1016/j.apt. 2013.01. 001.CrossRefGoogle Scholar
  22. [22]
    ABLAT A, WU R, MAMAT M, LI J, MUHEMMED E, SI C, WU R, WANG J, QIAN H, IBRAHIM K. Structural analysis and magnetic properties of Gd doped BiFeO3 ceramics [J]. Ceram Int, 2014, 40: 14083–14089. DOI: 10.1016/j.ceramin t.2014.05.137.CrossRefGoogle Scholar
  23. [23]
    BHALLA A S, GUO R, ROY R. The perovskite structure—A review of its role in ceramic science and technology [J]. Mater Res Innov, 2000, 4: 3–26. DOI: 10.1007/s100190000 062.CrossRefGoogle Scholar
  24. [24]
    ZHANG S, XIA R, SHROUT T R, ZANG G, WANG J. Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics [J]. J Appl Phys, 2006, 100: 104108–6. DOI: 10.1063/1.2382348.Google Scholar
  25. [25]
    NAVALE S C, SAMUEL V, RAVI V. A coprecipitation technique to prepare LiNbO3 powders [J]. Ceram Int, 2006, 32: 847–848. DOI: 10.1016/j.ceramint.2005.05.015.CrossRefGoogle Scholar
  26. [26]
    JADHAV A D, GAIKWAD A B, SAMUEL V, RAVI V. A low temperature route to prepare LaFeO3 and LaCoO3 [J]. Mater Lett, 2007, 61: 2030–2032. DOI: 10.1016/j.matlet. 2006.08.009.CrossRefGoogle Scholar
  27. [27]
    MA J, THEINGI M, CHEN Q, WANG W, LIU X, ZHANG H. Influence of synthesis methods and calcination temperature on electrical properties of La1-xCaxMnO3 (x=0.33 and 0.28) ceramics [J]. Ceram Int, 2013, 39: 7839–7843. DOI: 10.1016/j.ceramint.2013.03.044.CrossRefGoogle Scholar
  28. [28]
    VEITH M, MATHUR S, LECERF N, HUCH V, DECKER T. Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes [J]. J Sol-Gel Sci Technol, 2000, 15: 145–158. DOI: 10.1023/A:100879541.CrossRefGoogle Scholar
  29. [29]
    CHILIBON I, MARAT J N. Ferroelectric ceramics by sol–gel methods and applications: A review [J]. J Sol-Gel Sci Technol, 2012, 64: 571–611. DOI: 10.1007/s10971-012-2891-7.CrossRefGoogle Scholar
  30. [30]
    SHIMIZU Y, UEMURA K, MATSUDA H, MIURA N, YAMAZOE N. Bi-functional oxygen electrode using large surface area La1-xCaxCoO3 for rechargeable metal-air battery [J] J Electrochem Soc, 1990, 137: 3430–3433. DOI: 10. 11 49/1.2086234.CrossRefGoogle Scholar
  31. [31]
    ZHU Jun-jiang, YANG Xiang-guang, XU Xue-lian, WEI Ke-mei. Active site structure of NO decomposition on perovskite(-like) oxides: An investigation from experiment and density functional theory [J] J Phys Chem C, 2007, 111: 1487–1490. DOI: 10.1021/jp0662101.CrossRefGoogle Scholar
  32. [32]
    GRAÇA M P F, PREZAS P R, COSTA M M, VALENTE M A. Structural and dielectric characterization of LiNbO3 nanosize powders obtained by Pechini method [J]. J Sol-Gel Sci Technol, 2012, 64: 78–85. DOI: 10.1007/s10971-012- 2829–0.CrossRefGoogle Scholar
  33. [33]
    MARINŠEK M, ZUPAN K, MAÈEK J. Ni–YZ cermet anodes prepared by citrate/nitrate combustion synthesis [J]. J Power Sources, 2002, 106: 178–188. DOI: 10.1016/S0378- 7753(01)01056-4.CrossRefGoogle Scholar
  34. [34]
    CHAKROBORTY A, DAS S A, MAITI B, MAITI H S. Preparation of low-temperature sinterable BaCe0.8Sm0.2O3 powder by autoignition technique [J]. Mater Lett, 2002, 57: 862–867. DOI: 10.1016/S0167-577X(02)00886-8.CrossRefGoogle Scholar
  35. [35]
    DEGANELLO F, MARCÌ G, DEGANELLO G. Citrate–nitrate auto-combustion synthesis of perovskite-type nanopowders: A systematic approach [J]. J Eur Ceram Soc, 2009, 29: 439–450. DOI: 10.1016/j.jeurceramsoc.2008.06. 012.CrossRefGoogle Scholar
  36. [36]
    JIANG L, LIU W, WU A, XU J, LIU Q, QIAN G, ZHANG H. Low-temperature combustion synthesis of nanocrystalline HoFeO3 powders via a sol–gel method using glycin [J]. Ceram Int, 2012, 38: 3667–3672. DOI: 10.1016/j.ceramint. 2012.01.007.CrossRefGoogle Scholar
  37. [37]
    BENALI A, AZIZI S, BEJAR M, DHAHRI E, GRAÇA M F P. Structural, electrical and ethanol sensing properties of double-doping LaFeO3 perovskite oxides [J]. Ceram Int, 2014, 40: 14367–14373. DOI: 10.1016/j.ceramint.2014.06. 029.CrossRefGoogle Scholar
  38. [38]
    JI Lu-dong, ZHANG Jing-ji, GAO Yue-e, LI Yan-li, WANG Jiang-ying. Dielectric properties of Ba0.5Sr0.5TiO3–MgO composites synthesized by a citrate gel in situ process [J]. Ceram Int, 2014, 40: 11419–11422. DOI: 10.1016/ j.ceramint.2014.03.084.CrossRefGoogle Scholar
  39. [39]
    YANG Xin, REN Zhao-hui, CHAO Chun-ying, JIANG Shan, DENG Shi-qi, SHEN Ge, WEI Xiao, HAN Gao-rong. Monodisperse hollow perovskite BaTiO3 nanostructures prepared by a sol–gel–hydrothermal method [J]. Ceram Int, 2014, 40: 9663–9670. DOI: 10.1016/j.ceramint.2014.02.047.CrossRefGoogle Scholar
  40. [40]
    GUO H Y, LIN J G. Ferroelectric domain structure of highly textured BiFeO3 microcrystal films prepared by hydrothermal method [J]. J Cryst Growth, 2013, 364: 145–148. DOI: 10.1016/j.jcrysgro.2012.11.028.CrossRefGoogle Scholar
  41. [41]
    ZHANG Jing-ji, SHEN Bo, ZHAI Ji-wei, YAO Xi. Microwave dielectric properties and low sintering temperature of Ba0.5Sr0.5TiO3–Mg2TiO4 composites synthesized in situ by the hydrothermal method [J]. Ceram Int, 2013, 39: 5943–5948. DOI: 10.1016/j.ceramint.2012. 11.089.CrossRefGoogle Scholar
  42. [42]
    BASAVALINGU B, VIJAYA K M S, GIRISH H N, YODA S. Hydrothermal synthesis and characterization of rare earth doped yttrium aluminium perovskite-R: YAlO3 (R=Nd, Eu and Er) [J]. J Alloy Compd, 2013, 552: 382–386. DOI: 10.1016/j.jallcom.2012. 10.091.CrossRefGoogle Scholar
  43. [43]
    SUN Zi-xiong, PU Yong-ping, DONG Zi-jing, HU Yao, LIU Xiao-yan, WANG Pei-kui, GE Meng. Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3-xLa ceramics prepared by hydrothermal method [J]. Mater Lett, 2014, 118: 1–4. DOI: 10.1016/j.matlet.2013.12.043.CrossRefGoogle Scholar
  44. [44]
    FUENTES S, CÉSPEDES F, PADILLA-CAMPOS L, DIAZROGUETT D E. Chemical and structural analysis related to defects in nanocrystalline Ba1-xSrxTiO3 grown via hydrothermal sol—gel [J]. Ceram Int, 2014, 40: 4975–4984. DOI: /10.1016/j.ceramint.2013.09.134.CrossRefGoogle Scholar
  45. [45]
    BOUKRIBA M, SEDIRI F, GHARBI N. Hydrothermal synthesis and electrical properties of NaNbO3 [J]. Mater Res Bull, 2013, 48: 574–580. DOI: 10.1016/j.materresbull.2012. 11.046.CrossRefGoogle Scholar
  46. [46]
    ZHOU Z, GUO L, YE F. Hydrothermal synthesis, magnetism and resistivity of orthorhombic perovskite manganates Y1-xCaxMnO3 (x=0, 0.07, 0.55, 0.65) [J]. J Alloy Compd, 2013, 571: 123–131. DOI: 10.1016/j.jallcom.2013.03.220.CrossRefGoogle Scholar
  47. [47]
    WANG Shan, HUANG Ke-ke, ZHENG Bei-ning, ZHANG Jia-qi, FENG Shou-hua. Mild hydrothermal synthesis and physical property of perovskite Sr doped LaCrO3 [J]. Mater Lett, 2013, 101: 86–89. DOI: 10.1016/j.matlet.2013.03.083.CrossRefGoogle Scholar
  48. [48]
    MAKOVEC D, GORŠ AK T, ZUPAN K, LISJAK D. Hydrothermal synthesis of La1-xSrxMnO3 dendrites [J]. J Cryst Growth, 2013, 375: 78–83. DOI: 10.1016/j.jcrysgro. 2013.04.019.CrossRefGoogle Scholar
  49. [49]
    KUMAR R D, JAYAVEL R. Low temperature hydrothermal synthesis and magnetic studies of YMnO3 nanorods [J]. Mater Lett, 2013, 113: 210–213. DOI: 10.1016/j.matlet. 2013.09.070.CrossRefGoogle Scholar
  50. [50]
    ZHANG D, SHI F, CHENG J, YANG X, YAN E, CAO M. Preparation and characterization of orthorhombic NaNbO3 long bar [J]. Ceram Int, 2014, 40: 14279–14285. DOI: 10.1016/j.ceramint.2014.06.018.CrossRefGoogle Scholar
  51. [51]
    WANG J, DURUSSEL A, SANDU C S, SAHINI M G, HE Z, SETTER N. Mechanism of hydrothermal growth of ferroelectric PZT nanowires [J]. J Cryst Growth, 2012, 347: 1–6. DOI: 10.1016/j.jcrysgro.2012.03.022.CrossRefGoogle Scholar
  52. [52]
    AI Z, LU G, LEE S. Efficient photocatalytic removal of nitric oxide with hydrothermal synthesized Na0.5Bi0.5TiO3 nanotubes [J]. J Alloy Compd, 2014, 613: 260–266. DOI: 10.1016/j.jallcom.2014.06.039.CrossRefGoogle Scholar
  53. [53]
    XU Gang, ZHANG Yan-fang, HE Wan-bo, ZHAO Yan-gang, LIU Yong, SHEN Ge, HAN Gao-rong. Single-crystal lead titanate perovskite dendrites derived from single-crystal lead titanate pyrochlore dendrites by phase transition at elevated temperature [J]. J Cryst Growth, 2012, 346: 101–105. DOI: 10.1016/j.jcrysgro.2012.02.016.CrossRefGoogle Scholar
  54. [54]
    CHOI B H, PARK S, PARK B K, CHUN H H, KIMA Y, Controlled synthesis of La1-xSrxCrO3 nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium [J]. Mater Res Bull, 2013, 48: 3651–3656. DOI: 10.1016/j.materresbull. 2013.04.084.CrossRefGoogle Scholar
  55. [55]
    JI K, DAI H, DENG J, SONG L, XIE S, HAN W. Glucose-assisted hydrothermal preparation and catalytic performance of porous LaFeO3 for toluene combustion [J]. J Solid State Chem, 2013, 199: 164–170. DOI: 10.1016/j.jssc. 2012.12.017.CrossRefGoogle Scholar
  56. [56]
    WANG Z, ZHU J, XU W, SUI J, PENG H, TANG X. Microwave hydrothermal synthesis of perovskite BiFeO3 nanoparticles: An insight into the phase purity during the microwave heating process [J]. Mater Chem Phys, 2012, 135: 330–333. DOI: 10.1016/j.matchemphys.2012.04.053.CrossRefGoogle Scholar
  57. [57]
    PONZONI C, ROSA R, CANNIO M, BUSAGLIA V, FINOCCHIO E, NANNI P, LEONELLI C. Optimization of BFO microwave-hydrothermal synthesis: Influence of process parameters [J]. J Alloy Compd, 2013, 558: 150–159. DOI: 10.1016/j.jallcom.2013.01.039.CrossRefGoogle Scholar
  58. [58]
    LÓPEZ-JUÁREZ R, CASTAÑEDA-GUZMÁN R, VILLAFUERTE-CASTREJÓN M E. Fast synthesis of NaNbO3 and K0.5Na0.5NbO3 by microwave hydrothermal method [J]. Ceram Int, 2014, 40: 14757–14764. DOI: 10.1016/j.ceramint.2014.06.065.CrossRefGoogle Scholar
  59. [59]
    HE H, LIU M, DAI H, QIU W, ZI X. An investigation of NO/CO reaction over perovskite-type oxide La0.8Ce0.2B0.4Mn0.6O3 (B=Cu or Ag) catalysts synthesized by reverse microemulsion [J]. Catal Today, 2007, 126: 290–295. DOI: 10.1016/j.cattod.2007.06.004.CrossRefGoogle Scholar
  60. [60]
    AMAN D, ZAKI T, MIKHAIL S, SELIM S A. Synthesis of a perovskite LaNiO3 nanocatalyst at a low temperature using single reverse microemulsion [J]. Catal Today, 2011, 164: 209–213. DOI: 10.1016/j.cattod.2010.11.034.Google Scholar
  61. [61]
    ZHAO Yun-long, XU Lin, Mai Li-qiang, HAN Chun-hua, An Qin-you, XU Xu, LIU Xue, ZHANG Qing-jie. Hierarchical mesoporous perovskite La0.5Sr0.5CoO2.9 nanowires with ultrahigh capacity for Li-air batteries [J]. PNAS, 2012, 109: 19569–19574. DOI: 10.1073/ pnas.1210315109.CrossRefGoogle Scholar
  62. [62]
    SHOJAEI S, HASSANZADEH-TABRIZI S A, GHASHANG M. Reverse microemulsion synthesis and characterization of CaSnO3 nanoparticles [J]. Ceram Int, 2014, 40: 9609–9613. DOI: 10.1016/j.ceramint.2014.02.037.CrossRefGoogle Scholar
  63. [63]
    ABAZARI R, SANATI S. Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: Morphology, crystal structure, and their optical properties [J]. Superlattice Microst, 2013, 64: 148–157. DOI: 10.1016/j.spmi.2013.09.017.CrossRefGoogle Scholar
  64. [64]
    WANG Y, REN J, WANG Y, ZHANG F, LIU X, GUO Y, LU G. Nanocasted synthesis of mesoporous LaCoO3 perovskite with extremely high surface area and excellent activity in methane combustion [J]. J Phys Chem C, 2008, 112: 15293–15298. DOI: 10.1021/jp8048394.CrossRefGoogle Scholar
  65. [65]
    WANG N, YU X, WANG Y, CHU W, LIU M. A comparison study on methane dry reforming with carbon dioxide over LaNiO3 perovskite catalysts supported on mesoporous SBA-15, MCM-41 and silica carrier [J]. Catal Today, 2013, 212: 98–107. DOI: 10.1016/j.cattod.2012.07.022.CrossRefGoogle Scholar
  66. [66]
    GAO Bao-zu, DENG Ji-guang, LIU Yu-xi, ZHAO Zhen-xuan, LI Xin-wei, WANG Yuan, DAI Hong-xing. Mesoporous LaFeO3 catalysts for the oxidation of toluene and carbon monoxide [J]. Chinese J Catal, 2013, 34: 2223–2229. DOI: 10.1016/S1872-2067(12)60689-5.CrossRefGoogle Scholar
  67. [67]
    WANG Yong-xia, CUI Xiang-zhi, LI Yong-sheng, SHU Zhu, CHEN Hang-rong, SHI Jian-lin. A simple co-nanocasting method to synthesize high surface area mesoporous LaCoO3 oxides for CO and NO oxidations [J]. Micropor Mesopor Mat, 2013, 176: 8–15. DOI: 10.1016/j. micromeso.2013.03.033.CrossRefGoogle Scholar
  68. [68]
    XU Jun-feng, LIU Jian, ZHAO Zhen, ZHENG Jian-xiong, ZHANG Gui-zhen, DUAN Ai-jun, JIANG Gui-yuan. Three-dimensionally ordered macroporous LaCoxFe1-xO3 perovskite-type complex oxide catalysts for diesel soot combustion [J]. Catal Today, 2010, 153: 136–142. DOI: 10.1016/j.cattod.2010.01.063.CrossRefGoogle Scholar
  69. [69]
    SADAKANE M, HORIUCHI T, KATO N, SASAKI K, UEDA W. Preparation of three-dimensionally ordered macroporous perovskite-type lanthanum–iron-oxide LaFeO3 with tunable pore diameters: High porosity and photonic property [J]. J Solid State Chem, 2010, 183: 1365–1371. DOI: 10.1016/j.jssc.2010.04.012.CrossRefGoogle Scholar
  70. [70]
    XIAO Ping, ZHU Jun-jiang, Li Hai-long, JIANG Wen, WANG Tao, ZHU Yu-jun, ZHAO Yan-xi, LI Jin-lin. Effect of textural structure on the catalytic performance of LaCoO3 for CO oxidation [J]. Chem Cat Chem, 2014, 6: 1774–1781. DOI: 10.1002/cctc. 201402064.Google Scholar
  71. [71]
    LIU Y, DAI H, DU Y, DENG J, ZHANG L, ZHAO Z, AU C T. Controlled preparation and high catalytic performance of three-dimensionally ordered macroporous LaMnO3 with nanovoid skeletons for the combustion of toluene [J]. J Catal, 2012, 287: 149–160. DOI: 10.1016/j.jcat.2011.12.015.CrossRefGoogle Scholar
  72. [72]
    JI K, DAI H, DENG J, ZHANG L, WWANG F, JIANG H, AU C T. Three-dimensionally ordered macroporous SrFeO3-d with high surface area: Active catalysts for the complete oxidation of toluene [J]. Appl Catal A: Gen, 2012, 425–426: 153–160. DOI: 10.1016/j.apcata.2012.03.013.Google Scholar
  73. [73]
    LIU Yu-xi, DAI Hong-xing, DU Yu-cheng, DENG Ji-guang, ZHANG Lei, ZHAO Zhen-xuan. Lysine-aided PMMAtemplating preparation and high performance of threedimensionally ordered macroporous LaMnO3 with mesoporous walls for the catalytic combustion of toluene [J]. Appl Catal B: Environ, 2012, 119–120: 20–31. DOI: 10.1016/j.apcatb.2012.02.010.CrossRefGoogle Scholar
  74. [74]
    ZHAO Z, DAI H, DENG J, DU Y, LIU Y, ZHANG L. Three-dimensionally ordered macroporous La0.6Sr0.4FeO3-δ: High-efficiency catalysts for the oxidative removal of toluene [J]. Micropor Mesopor Mat, 2012, 163: 131–139. DOI: 10.1016/j.micromeso.2012.07.006.CrossRefGoogle Scholar
  75. [75]
    ARANDIYAN H, DAI H, DENG J, LIU Y, BAI B, WANG Y, LI X, XIE S, LI J. Three-dimensionally ordered macroporous La0.6Sr0.4MnO3 with high surface areas: Active catalysts for the combustion of methane [J]. J Catal, 2013, 307: 327–339. DOI: 10.1016/j.jcat.2013.07.013.CrossRefGoogle Scholar
  76. [76]
    ZHAO Zhen-xuan, DAI Hong-xing, DENG Ji-guang, DU Yu-cheng, LIU Yu-xi, ZHANG Lei. Preparation of threedimensionally ordered macroporous La0.6Sr0.4Fe0.8Bi0.2O3-δ and their excellent catalytic performance for the combustion of toluene [J]. J Mol Catal A: Chem, 2013, 366: 116–125. DOI: 10.1016/j.molcata.2012.09. 014.CrossRefGoogle Scholar
  77. [77]
    LIU Y, DAI H, DENG J, LI X, WANG Y, ARANDIYAN H, XIE S, YANG H, GUO G. Au/3DOM La0.6Sr0.4MnO3: Highly active nanocatalysts for the oxidation of carbon monoxide and toluene [J]. J Catal, 2013, 305: 146–153. DOI: 10.1016/ j.jcat.2013.04.025.CrossRefGoogle Scholar
  78. [78]
    LI Wei, LIU Jun, ZHAO Dong-yuan. Mesoporous materials for energy conversion and storage devices [J]. Nature Reviews Materials, 2016, 1: 16023–16040. DOI: 10.1038/natrevmats.2016.23.CrossRefGoogle Scholar
  79. [79]
    SALANNE M, ROTENBERG B, NAOI K, KANEKO K, TABERNA P L, GREY C P, DUNN B, SIMON P. Efficient storage mechanisms for building better supercapacitors [J]. Nature Energy, 2016, 1: 16070–16080. DOI: 10.1038/ nenergy.2016.70.CrossRefGoogle Scholar
  80. [80]
    GEWIRTH A A, THORUM M S. Electroreduction of dioxygen for fuel-cell applications: Materials and Challenges [J]. Inorg Chem, 2010, 49: 3557–3566. DOI: 10.1021/ ic9022486.CrossRefGoogle Scholar
  81. [81]
    LI J, CHEN J, WANG H, REN Y, LIU K, TANG Y, SHAO M. Fe/N co-doped carbon materials with controllable structure as highly efficient electrocatalysts for oxygen reduction reaction in Al-air batteries [J]. Energy Storage Mater, 2017, 8: 49–58. DOI: 10.1016/j.ensm.2017.03.007.CrossRefGoogle Scholar
  82. [82]
    LI J, ZHOU Z, LIU K, LI F, PENG Z, TANG Y. Co3O4/Co-N-C modified ketjenblack carbon as an advanced electrocatalyst for Al-air batteries [J]. J Power Sources, 2017, 343: 30–38. DOI: 10.1016/j.jpowsour.2017.01.018.CrossRefGoogle Scholar
  83. [83]
    SONG J, REN Y, LI J, HUANG X, CHENG F, TANG Y, WANG H. Core-shell Co/CoNx@C nanoparticles enfolded by Co-N doped carbon nanosheets as a highly efficient electrocatalyst for oxygen reduction reaction [J]. Carbon, 2018, 138: 300–308.CrossRefGoogle Scholar
  84. [84]
    LI Yan-guang, GONG Ming, LIANG Yong-ge, FENG Ju, KIM Ji-Eun, WANG Hai-liang, HONG Guo-song, ZHANG Bo, DAI Hong-jie. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts [J]. Nat Commun, 2013, 4: 1805–1812. DOI: 10.1038/ncomms2812.CrossRefGoogle Scholar
  85. [85]
    LEE J S, KIM ST, CAO R, CHOI N S, LIU M, LEE K T, CHO J. Metal–air batteries with high energy density: Li–air versus Zn–air [J]. Adv Energy Mater, 2011, 1: 34–50. DOI: 10.1002/aenm.201000010.CrossRefGoogle Scholar
  86. [86]
    DONG H, KIROS Y, NORÉ US D. An air-metal hydride battery using MmNi3.6Mn0.4Al0.3Co0.7 in the anode and a perovskite in the cathode [J]. Inter J Hydrogen Energy, 2010, 35: 4336. DOI: 10.1016/j.ijhydene.2010.02.007.CrossRefGoogle Scholar
  87. [87]
    FU G, YAN X, CHEN Y, XU L, SUN D, LEE J M, TANG Y. Boosting bifunctional oxygen electrocatalysis with 3D graphene aerogel-supported Ni/MnO Particles [J]. Adv Mater, 2018, 30: 1704609. DOI: 10.1002/adma.201704609.Google Scholar
  88. [88]
    WANG H, WANG W, GUI M, ASIF M, WANG Z, YU Y, XIAO J, LIU H. Uniform Fe3O4/Nitrogen-doped mesoporous carbon spheres derived from ferric citrate-bonded melamine resin as an efficient synergistic catalyst for oxygen reduction [J]. ACS Appl Mater Interfaces, 2017, 9: 335–344. DOI: 10.1021/acsami.6b11608.CrossRefGoogle Scholar
  89. [89]
    HUANG S F, HSU Y Y, CHANG C J, HSU C S, SUEN N T, CHAN T S, CHEN M H. Unraveling geometrical site confinement in highly efficient iron-doped electrocatalysts toward oxygen evolution reaction [J]. Adv Energy Mater, 2018, 8: 1701686. DOI: doi.org/10.1002/aenm.201701686.Google Scholar
  90. [90]
    LI Y, YANG J, HUANG J, ZHOU Y, XU K, ZHAO N, CHENG X. Soft template-assisted method for synthesis of nitrogen and sulfur co-doped three-dimensional reduced graphene oxide as an efficient metal free catalyst for oxygen reduction reaction [J]. Carbon, 2017, 122: 237–246. DOI: 10. 1016/j.carbon.2017.06.046.CrossRefGoogle Scholar
  91. [91]
    BIRSELL M, PIRJAMALI M, KIROS Y. La0.6Ca0.4CoO3, La0.1Ca0.9MnO3 and LaNiO3 as bifunctional oxygen electrodes [J]. Electrochim Acta, 2002, 47: 1651–1660. DOICrossRefGoogle Scholar
  92. [92]
    NEBURCHILOV V, WANG H J, MARTIN J J, QU W. A review on air cathodes for zinc–air fuel cells [J]. J Power Sources, 2010, 195: 1271–1291. DOI: 10.1016/j.jpowsour. 2009.08.100.CrossRefGoogle Scholar
  93. [93]
    PEÑA M A, FIERRO J L G. Chemical structures and performance of perovskite oxides [J]. Chem Rev, 2001, 101: 1981–2018. DOI: 10.1021/cr980129f.CrossRefGoogle Scholar
  94. [94]
    SWETTE L, KACKLEY N, MCCATTY S A. Oxygen electrodes for rechargeable alkaline fuel cells. III [J]. J Power Sources, 1991, 36: 323–339. DOI: 10.1016/0378- 7753(91)87010-9.CrossRefGoogle Scholar
  95. [95]
    KANNAN A M, SHUKLA A K, SATHYANARAYANA S. Oxide-based bifunctional oxygen electrode for rechargeable metal/air batteries [J]. J Power Sources, 1989, 25: 141–150. DOI: 10.1016/0378-7753(89)85006-2.CrossRefGoogle Scholar
  96. [96]
    SWETTE L, KACKLEY N. Oxygen electrodes for rechargeable alkaline fuel cells–II [J]. J Power Sources, 1990, 29: 423–436. DOI: 10.1016/0378-7753(90)85015-5.CrossRefGoogle Scholar
  97. [97]
    SUNTIVICH J, GASTEIGER H A, YABUUCHI N, NAKANISHI H, GOODENOUGH J B, HORN Y S. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries [J]. Nature Chem, 2011, 3: 546–550. DOI: 10.1038/NCHEM.1069.CrossRefGoogle Scholar
  98. [98]
    ZHANG T, IMANISHI N, TAKEDA Y, YAMAMOTO O. Aqueous lithium/air rechargeable batteries [J]. Chem Lett, 2011, 40: 668–673. DOI: 10.1246/cl.2011.668.CrossRefGoogle Scholar
  99. [99]
    OHKUMA H, UECHI I, IMANISHI N, HIRANO A, TAKEDA Y, YAMAMOTO O. Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries [J]. J Power Sources, 2013, 223: 319–324. DOI: 10.1016/j.jpowsour.2012.09.028.CrossRefGoogle Scholar
  100. [100]
    CHANG Y M, WU P W, WU C Y, HSIEH Y F, CHEN J Y. Mechanical alloying preparation of La0.6Ca0.4CoIr0.25O3.5-d as a bifunctional electrocatalyst in alkaline electrolyte [J]. Electrochem Solid State Lett, 2008, 11: B47-B50. DOI: 10.1149/1.2835200.Google Scholar
  101. [101]
    CHANG Y M, HSIEH Y C, WU P W, LAI C H, CHANG T Y. Enhancement of bifunctional catalysis by Ir doping of La0.6Ca0.4CoO3 perovskites [J]. Mater Lett, 2008, 62: 4220–4222. DOI: 10.1016/j. matlet.2008.06.040.CrossRefGoogle Scholar
  102. [102]
    CHANG Y M, WU P W, WU C Y, HSIEN Y C. Synthesis of La0.6Ca0.4Co0.8Ir0.2O3 perovskite for bi-functional catalysis in an alkaline electrolyte [J]. J Power Sources, 2009, 189: 1003–1007. DOI: 10.1016/j.jpowsour.2008.12.101.CrossRefGoogle Scholar
  103. [103]
    ZHUANG Shu-xin, HUANG Ke-long, HUANG Cheng-huan, HUANG Hong-xia, LIU Su-qin, FAN Min. Preparation of silver-modified La0.6Ca0.4CoO3 binary electrocatalyst for bi-functional air electrodes in alkaline medium [J]. J Power Sources, 2011, 196: 4019–4025. DOI: 10.1016/j.jpowsour. 2010.11.056.CrossRefGoogle Scholar
  104. [104]
    DENG J G, ZHANG L, DAI H X, AU C T. In situ hydrothermally synthesized mesoporous LaCoO3/SBA-15 catalysts: High activity for the complete oxidation of toluene and ethyl acetate [J]. Appl Catal A, 2009, 352: 43–49. DOI: 10.1016/j.apcata.2008.09.037.CrossRefGoogle Scholar
  105. [105]
    HU Jie, WANG Li-na, SHI Li-na, HUANG Hao. Preparation of La1-xCaxMnO3 perovskite-graphene composites as oxygen reduction reaction electrocatalyst in alkaline medium [J]. J Power Sources, 2014, 269: 144–151. DOI: 10.1016/j. jpowsour.2014.07.004.CrossRefGoogle Scholar
  106. [106]
    PARK H W, LEE D U, ZAMANI P, SEO M H, NAZAR L F, CHEN Z. Electrospun porous nanorod perovskite oxide/ nitrogen-doped graphene composite as a bi-functional catalyst for metal air batteries [J]. Nano Energy, 2014, 10: 192–200. DOI: 10.1016/j.nanoen.2014.09.009.CrossRefGoogle Scholar
  107. [107]
    LI J, ZHOU N, SONG J, FU L, YAN J, TANG Y, WANG H. Cu-MOF-derived Cu/Cu2O nanoparticles and CuNxCy species to boost oxygen reduction activity of Ketjenblack carbon in Al-air battery [J]. ACS Sustainable Chem Eng, 2018, 6: 413–421. DOI: 10.1021/acssuschemeng.7b02661.CrossRefGoogle Scholar
  108. [108]
    LI J, CHEN J, WAN H, XIAO J, TANG Y, LIM M, WANG H. Boosting oxygen reduction activity of Fe-N-C by partial copper substitution to iron in Al-air batteries [J]. Appl Catal B: Environ, 2019, 242: 209–217. DOI: 10.1016/j.apcatb. 2018.09.044.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shu-xin Zhuang (庄树新)
    • 1
    Email author
  • Jia-yi He (何佳怡)
    • 1
  • Wei-peng Zhang (张伟鹏)
    • 1
  • Nan Zhou (周南)
    • 2
  • Mi Lu (路密)
    • 1
  • Ji-qiong Lian (廉冀琼)
    • 1
  • Jing-jing Sun (孙婧婧)
    • 1
  1. 1.Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and EngineeringXiamen University of TechnologyXiamenChina
  2. 2.College of ScienceHunan Agricultural UniversityChangshaChina

Personalised recommendations