Journal of Central South University

, Volume 26, Issue 1, pp 219–228 | Cite as

High efficient Sr/S isolation for preparing Sr(OH)2 from celestite (SrSO4) in alkaline solution

  • Si-ming Chen (陈思明)
  • Dong-ping Duan (段东平)Email author
  • Yan Liu (刘艳)
  • E Zhou (周娥)
  • Hong-liang Han (韩宏亮)
  • Xing-wu Zou (邹兴武)


The bottleneck of strontium compounds preparing from celestite is the promotion of Sr/S isolation efficiency. Low energy consumption and zero release method for isolating Sr/S in preparing Sr(OH)2 process from celestite in mild condition was described. Sr element remained in precipitation with formation of Sr(OH)2, while S element entered into leachate with formation of Na2SO4. The effects of initial concentration of NaOH, conversion temperature, liquid-to-solid (L/S) ratio and conversion time on Sr/S ratio of samples for celestite conversion were systematically investigated by experiments. The results demonstrated that the efficiency of Sr/S isolation increased with the initial concentration of NaOH, L/S ratio and conversion time, and decreased with conversion temperature. The maximum conversion ratio of Sr(OH)2 was 93.88% under the optimum condition, whose Sr/S ratio of sample could reach to 41.16. It illustrated that better isolation efficiency of celestite could be achieved in alkaline treatment. The results of SEM-EDS analyses demonstrated that the conversion reaction was a dissolution-precipitation process.

Key words

celestite Sr(OH)2 high efficient Sr/S isolation dissolution-precipitation process 

天青石(SrSO4)碱性溶液转化Sr(OH)2 过程中的Sr/S 元素高效分离


天青石制备其他锶化合物的瓶颈在于如何实现Sr/S 元素的高效分离。本文针对天青石转化 Sr(OH)2 过程中的Sr/S 元素高效分离进行研究,开发出一种低能耗及零污染的Sr/S 元素分离新方法, 其中Sr 元素以Sr(OH)2 形式存在于固相中,S 元素则以Na2SO4 形式进入液相中。通过对反应过程中 的因素,如初始NaOH 浓度、转化温度、液固比和转化时间对Sr/S 元素分离效率的影响进行的研究, 结果发现Sr/S 元素的分离效率随着初始NaOH 浓度、液固比和反应时间的增大而增加,而随着反应 温度的升高而降低。在所得最优转化条件下,Sr(OH)2 的最大转化率可达93.88%,该样品中的Sr/S 比 可达到41.16。这证实了在碱性溶液中天青石转化成Sr(OH)2 过程可以较好地实现Sr/S 的高效分离。 样品的SEM-EDS 测试结果表明其转化过程为溶解-沉积过程。


天青石 Sr(OH)2 Sr/S 元素高效分离 溶解-沉积过程 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors also acknowledge Qinghai Zhongkeyuanhao Strontium Technology Co., Ltd. for its partial financial support of this investigation.


  1. [1]
    DUSZA M, STEFANSKI M, WOZNIAK M, HRENIAK D, GERASYMCHUK Y, MARCINIAK L, GRANEK F, STREK W. Luminescent Sr2CeO4 nanocrystals for applications in organic solar cells with conjugated polymers [J]. Journal of Luminescence, 2016, 169: 857–861.CrossRefGoogle Scholar
  2. [2]
    PLAZA M, HUANG X, PETER KO J Y, SHEN M, SIMPSON B H, RODRÍGUEZ-LÓPEZ J, RITZERT N L, LETCHWORTH-WEAVER K, GUNCELER D, SCHLOM D G, ARIAS T A, BROCK J D, ABRUÑA H D. Structure of the photo-catalytically active surface of SrTiO3 [J]. Journal of the American Chemical Society, 2016, 138: 7816–7819.CrossRefGoogle Scholar
  3. [3]
    WANG W, JIA D C, ZHOU Y. Preparation and properties of SrBi2.2Ta2O9 thin film [J]. Journal of Central South University, 2005, 12(4): 376–379.CrossRefGoogle Scholar
  4. [4]
    ERDEMOGLU M, CANBAZOGLU M H Y. Carbothermic reduction of high-grade celestite ore to manufacture strontium carbonate [J]. Mineral Processing and Extractive Metallurgy IMM Transactions Section C, 1998, 107: 65–70.Google Scholar
  5. [5]
    ERDEMOGLU M. carbothermic reduction of mechanically activated celestite [J]. International Journal of Mineral Processing, 2009, 92: 144–152.CrossRefGoogle Scholar
  6. [6]
    YUAN P, HAN H L, DUAN D P. Experimental research on different reductants applied in RHF direct reduction process [J]. Journal of Hebei United University (Natural Science Edition), 2015, 37(1): 52–58. (in Chinese)Google Scholar
  7. [7]
    SETOUDEH N, WELHAM N J. Ball milling induced reduction of SrSO4 by Al [J]. International Journal of Mineral Processing, 2011, 98(3, 4): 214–218.CrossRefGoogle Scholar
  8. [8]
    SETOUDEH N, WELHAM N J. Mechanochemical reduction of SrSO4 by Mg [J]. International Journal of Mineral Processing, 2012, 104–105: 49–52.CrossRefGoogle Scholar
  9. [9]
    ERDEMOGLU M, SARIKAYA M, CANBAZOGLU M. Leaching of celestite with sodium sulfide [J]. Journal of Dispersion Science and Technology, 2006, 27: 439–442.CrossRefGoogle Scholar
  10. [10]
    ZORAGA M, KAHRUMAN C, YUSUFOGLU I. Conversion kinetics of SrSO4 to SrCO3 in solution obtained by dissolving/hydrolyzing of equimolar amounts of NH4HCO3 and NH4COONH2 [J]. Hydrometallurgy, 2016, 163: 120–129.CrossRefGoogle Scholar
  11. [11]
    BINGOL D, AYDOGAN S, GULTEKIN S S. Neural model for the leaching of celestite in sodium carbonate solution [J]. Chemical Engineering Journal, 2010, 165: 617–624.CrossRefGoogle Scholar
  12. [12]
    SETOUDEH N, WELHAN N J, AZAMI S M. Dry mechanochemical conversion of SrSO4 to SrCO3 [J]. Journal of Alloys and Compounds, 2010, 492: 389–391.CrossRefGoogle Scholar
  13. [13]
    AYDOGAN S, ERDEMOGLU M, ARAS A, UÇAR G, ÖZKAN A. Dissolution kinetics of celestite (SrSO4) in HCl solution with BaCl2 [J]. Hydrometallurgy, 2006, 84: 239–246.CrossRefGoogle Scholar
  14. [14]
    SUÁREZ-ORDUNA R, RENDÓN-ANGELES J C, MATAMOROS-VELOZA Z, YANAGISAWA K. Exchange of SO42- ions with F–ions in mineral celestite under hydrothermal conditions [J]. Solid State Ionics, 2004, 172(1–4): 393–396.CrossRefGoogle Scholar
  15. [15]
    RENDÓN-ANGELES J C, MATAMOROS-VELOZA Z, VELOZA A M, PEREZ-GARIBAY R, RODRIGUEZGALICIA J, KAZUMICHI Y. Facile synthesis of perovskitestructured powders using barite–celestite ore under hydrothermal alkaline conditions [J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 9942–9952.CrossRefGoogle Scholar
  16. [16]
    ZORAGA M, KAHRUMAN C, YUSUFOGLU I. Determination of conversion reaction mechanism of celestite to acidic strontium oxalate hydrate in aqueous solution of H2C2O4 [J]. Hydrometallurgy, 2017, 171: 53–60.CrossRefGoogle Scholar
  17. [17]
    TURIANICOVÁ E, OBUT A, ZORKOVSKÁ A, BALÁŽ P, MATIK M, BRIANCIN J. The effects of LiOH and NaOH on the carbonation of SrSO4 by dry high-energy milling [J]. Minerals Engineering, 2013, 49: 98–102.CrossRefGoogle Scholar
  18. [18]
    SAHIN M, ERDEM M. Cleaning of high lead-bearing zinc leaching residue by recovery of lead with alkaline leaching [J]. Hydrometallurgy, 2015, 153: 170–178.CrossRefGoogle Scholar
  19. [19]
    LIU Y, ZHANG Y F, CHEN F F, ZHANG Y. The alkaline leaching of molybdenite flotation tailings associated with galena [J]. Hydrometallurgy, 2012, 129–130: 30–34.CrossRefGoogle Scholar
  20. [20]
    SONG L M, LI Y M, HE P Z, ZHANG S J, WU X Q, FANG S, SHAN J J, SUN D L. Synthesis and sonocatalytic property of rod-shape Sr(OH)2·8H2O [J]. Ultrasonics Sonochemistry, 2014, 21: 1318–1324.CrossRefGoogle Scholar
  21. [21]
    KADARI A, MAHI K, MOSTEFA R, BADAOUI M, MAMECHE A, KADRI D. Optical and structural properties of Mn doped CaSO4 powders synthesized by sol-gel process [J]. Journal of Alloys and Compounds, 2016, 688: 32–36.CrossRefGoogle Scholar
  22. [22]
    LOPEZ-VALDIVIESO A, ROBLEDO-CABRERA A, URIBE-SALAS A. Flotation of celestite with the anionic collector sodium dodecyl sulfate [J]. Int J Miner Process, 2000, 60: 79–90.CrossRefGoogle Scholar
  23. [23]
    OWUSU G, LITZ J E. Water leaching of SrS and precipitation of SrCO3 using carbon dioxide as the precipitating agent [J]. Hydrometallurgy, 2000, 57: 23–29.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt LakesChinese Academy of SciencesXi’ningChina
  2. 2.Qinghai Engineering and Technology Research Center of Comprehensive Utilization of Salt Lake ResourcesKey Laboratory of Salt Lake Resources Chemistry of Qinghai ProvinceXi’ningChina
  3. 3.University of Chinese Academy of SciencesBeijingChina
  4. 4.Key Laboratory of Green Process Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations