Journal of Central South University

, Volume 26, Issue 1, pp 207–218 | Cite as

Selective determination of trace cobalt in zinc electrolytes by second-derivative catalytic polarography

  • Hong-qiu Zhu (朱红求)
  • Juan Du (杜娟)
  • Yong-gang Li (李勇刚)Email author
  • Tai-ming Zhang (张泰铭)
  • Fei Cheng (程菲)


We report herein a highly selective method for directly determining the trace Co2+ in highly concentrated zinc electrolyte. This novel method is based on a second derivative wave of catalytic adsorptive polarography generated by complexing Co2+ with dimethylglyoxime and nitrite onto a dropping mercury electrode. By employing a medium with NH3-NH4Cl buffer, DMG and NaNO2 during determining the trace Co2+, any interferences of highly concentrated Zn2+ and other coexisting metal ions in the electrolyte are completely eliminated due to the selective masking effect of EDTA. When the concentration of Co2+ is within 1.0×10–10–3.2×10–7 mol/L range, it shows a good linear relationship with the current peak. Detection limit is 1.0×10–11 mol/L, and RSD ≤2.7% for six successive assays. We have compared the efficiency of the current method to that obtained by cobalt nitroso-R-salt spectrophotometry, and the absolute values of relative deviations are ≤4.2%. The method developed and described herein has been successfully employed in determining the trace Co2+ in actual zinc electrolyte.

Key words

catalytic adsorptive voltammetry highly selective masking Co2+ determination zinc electrolyte 



本文报道了一个直接测定高浓度锌电解液中痕量钴的选择性方法。该方法基于测定Co2+在滴汞 电极表面与丁二酮及亚硝酸盐络合产生的催化吸附极谱的二阶导数波建立起来的。利用NH3–NH4Cl 缓冲剂,DMG 及NaNO2 组成的底液测定痕量钴时。由于EDTA 的选择性掩蔽作用,电解液中高浓度 锌及任何其他金属离子的干扰都能完全排除。当Co2+浓度在1.0×10–10~3.2×10–7 mol/L 范围时,与峰电 流有良好的线性关系,检出限为1.0×10–11 mol/L,RSD≤2.7%。将本法与亚硝基红盐显色法测定的结果 进行了比较,相对偏差的绝对值≤4.2%。本文提出的方法已成功用于实际锌电解液中痕量钴的测定。


催化吸附伏安法 高选择性掩蔽 钴的测定 锌电解液 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BOBROWSKI A. Review of adsorptive stripping voltammetric methods for cobalt determination in the presence of a zinc matrix [J]. Fresenius Journal of Analytical Chemistry, 1994, 349(8, 9): 613–619.CrossRefGoogle Scholar
  2. [2]
    MRZLJAK R I, BOND A M, CARDWELL T J, CATTRALL R W, KNIGHT R W, NEWMAN O M G, CHAMPION B R, HEY J, BOBROWSKI A. On-line monitoring of cobalt in zinc plant electrolyte by differential pulse adsorptive stripping voltammetry [J]. Analytica Chimica Acta, 1993, 281(2): 281–290.CrossRefGoogle Scholar
  3. [3]
    WANG Guo-wei, YANG Chun-hua, ZHU Hong-qiu, LI Yong-gang, GUI Wei-hua. Reagent optimization for on-line simultaneous polarographic determination of trace amounts of Cu2+, Cd2+ and Co2+ in the presence of an extremely large excess of Zn2+ [J]. Journal of Central South University, 2016, 23(9): 2199–2204.CrossRefGoogle Scholar
  4. [4]
    GHASEMI J, SHAHABADI N, SERAJI H R. Spectrophotometric simultaneous determination of cobalt, copper and nickel using nitroso-R-salt in alloys by partial least squares [J]. Analytica Chimica Acta, 2004, 510(1): 121–126.CrossRefGoogle Scholar
  5. [5]
    AMIN A S. Study on the solid phase extraction and spectrophotometric determination of cobalt with 5-(2-benzothiazolylazo)-8-hydroxyquinolene [J]. Arabian Journal of Chemistry, 2014, 7(5): 715–721.CrossRefGoogle Scholar
  6. [6]
    WEN Xiao-dong, HE Lei, SHI Chun-sheng, DENG Qing-wen, WANG Ji-wei, ZHAO Xia. Application of rapid cloud point extraction method for trace cobalt analysis coupled with spectrophotometric determination [J]. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2013, 115(11):452–456.CrossRefGoogle Scholar
  7. [7]
    CHEN Xi, GUO Fang-qiu, HUANG Lan-fang, ZHANG Jie, YANG Chun-hua. Simultaneous determination of copper, cadmium and cobalt in zinc electrolyte by inductively coupled plasma atomic emission spectrometry [J]. Metallurgical Analysis, 2012, 32(11): 51–55. (in Chinese)Google Scholar
  8. [8]
    ABOUHIAT F Z, HENRIQUEZ C, EL YOUSFI F, CERDÀ V. Sensitive kinetic-catalytic spectrophotometric method for cobalt determination using a chip coupled to a multisyringe flow injection analysis system [J]. Talanta, 2017, 166(5): 405–411.CrossRefGoogle Scholar
  9. [9]
    YANG Liang-fu. Determination of Co, Ni, Cd, Pb, Cu, Fe in zinc electrolyte by atomic absorption spectrometry [J]. Yunnan Metallurgy, 1996, 25(2): 49–51. (in Chinese)Google Scholar
  10. [10]
    HUSÁKOVÁ L, BOBROWSKI A, ŠRÁMKOVÁ J, KRÓLICKA A, VYTRAS K. Catalytic adsorptive stripping voltammetry versus electrothermal atomic absorption spectrometry in the determination of trace cobalt and chromium in human urine [J]. Talanta, 2005, 66: 999–1004.CrossRefGoogle Scholar
  11. [11]
    HUO Yan-yan, HAN Quan, YANG Xiao-hui. Study on the polarographic adsorption wave of complex formed by cobalt (II) and 2-(5-iodo-2-pyridine azo)-5-dimethylaminoaniline and its application [J]. Metallurgical Analysis, 2013, 33(2): 18–21. (in Chinese)Google Scholar
  12. [12]
    ZHANG Ming-hao, LIANG Yi-zeng. Rapid and simultaneous determination of copper, cadmium, nickel, and cobalt in zinc electrolyte solutions by complex adsorption wave polarography [J]. Journal of Trace & Microprobe Techniques, 2002, 20(1): 1–14.MathSciNetCrossRefGoogle Scholar
  13. [13]
    NI Ya-ming, LI Ling, GAO Xiao-xia. Study on the polarographic catalytic wave of the system cobalt(II)- dimethylglyoxime-nitrite system [J]. Acta Chimica Sinica, 1988, 46(7): 651–656. (in Chinese)Google Scholar
  14. [14]
    BOBROWSKI A, BOND A M. Exploitation of the nitrite catalytic effect to enhance the sensitivity and selectivity of the adsorptive stripping voltammetric method for the determination of cobalt with dimethylglyoxime [J]. Electroanalysis, 1992, 4: 975–979.CrossRefGoogle Scholar
  15. [15]
    BOBROWSKI A, ZAREBSKI J, KRÓLICKA A. Determination of cobalt and nickel in biological materials using catalytic adsorptive stripping voltammetry in sensing in electroanalysis, Vol. 7 [M]. Pardubice: University Press Centre, 2012, 7: 201–210.Google Scholar
  16. [16]
    BOROVKOV G A, MONASTYRSKAYA V I. Voltammetric determination of cobalt(II) in zinc sulfate solution [J]. Russian Journal of Applied Chemistry, 2001, 74(8): 1310–1317.CrossRefGoogle Scholar
  17. [17]
    BOBROWSKI A, BOND A M. Catalytic adsorptive stripping voltammetric determination of cobalt as an a-benzildioxime complex in the presence of an extremely large excess of zinc [J]. Electroanalysis, 2010, 22(3): 157–162.CrossRefGoogle Scholar
  18. [18]
    BOBROWSKI A, ZAREBSKI J. Catalytic adsorptive stripping voltammetry at film electrodes [J]. Current Analytical Chemistry, 2008, 4(3): 191–201.CrossRefGoogle Scholar
  19. [19]
    BOBROWSKI A, KRÓLICKA A, PUTEK M, ZAREBSKI J, GUZSVÁNY V. Catalytic adsorptive stripping voltammetry of Co(II)-dioxime-bromate systems at renewable amalgam film electrode [J]. Electrochimica Acta, 2013, 107: 93–102.CrossRefGoogle Scholar
  20. [20]
    BOBROWSKI A. Application of catalytic adsorptive stripping voltammetry of the cobalt-α-benzil dioxime complex to analysis of cobalt traces in metallic zinc [J]. Talanta, 1994, 41(5): 725–729.CrossRefGoogle Scholar
  21. [21]
    BOBROWSKI A. Catalytic adsorptive stripping voltammetric determination of cobalt and nickel as their a-furil dioxime complexes [J]. Electroanalysis, 2004, 16(18): 1536–1541.CrossRefGoogle Scholar
  22. [22]
    KROLICKA A, BOBROWSKI A, KALCHER K, MOCAK J, SVANCARA I, VVTRAS K. Study on catalytic adsorptive stripping voltammetry of trace cobalt at bismuth film electrodes [J]. Electroanalysis, 2003, 15(23, 24): 1859–1863.CrossRefGoogle Scholar
  23. [23]
    BOBROWSKI A. Determination of cobalt by adsorptive stripping voltammetry using cobalt(II)-nioxime-nitrite catalytic system [J]. Analytical Letters, 1990, 23(17): 1497–1503.Google Scholar
  24. [24]
    GEIBLER M, RUI D M. Determination of cobalt in the presence of high concentrations of zinc by differential pulse polaro graphy [J]. Fresenius Zeitschrift Für Analytische Chemie, 1988, 330(7): 624–626.CrossRefGoogle Scholar
  25. [25]
    SCHMIDT T, GEIBLER M, WERNER G, EMONS H. Polarographic cobalt determination in the presence of high zinc concentrations [J]. Fresenius Zeitschrift Für Analytische Chemie, 1988, 330(8): 712–713.CrossRefGoogle Scholar
  26. [26]
    SOMER G, SÜKRÜ KALAYCI, SENDIL O. A new and direct method for the determination of trace elements in spinach using differential pulse polarography [J]. Journal of Electroanalytical Chemistry, 2016, 778: 49–52.CrossRefGoogle Scholar
  27. [27]
    BOBROWSKI A. Polarographic methods for ultratrace cobalt determination based on adsorption-catalytic effects in cobalt(II)-dioxime-nitrite systems [J]. Analytical Chemistry, 1989, 61(19): 2178–2184.CrossRefGoogle Scholar
  28. [28]
    MU Peng-tao, SHEN Qing-feng, YU Xiao-hua, XU Shuang-quan, LIU Chun-xia. Determination of copper, lead, cadmium and nickel in zinc electrolyte by differential pulse stripping voltammetry [J]. Metallurgical Analysis, 2016, 36(10): 15–20. (in Chinese)Google Scholar
  29. [29]
    BOBROWSKI A, ZAREBSKI J. Catalytic systems in adsorptive stripping voltammetry [J]. Electroanalysis, 2000, 12(15): 1177–1186CrossRefGoogle Scholar
  30. [30]
    SUN Chang-lin, WANG Jian-yan, HU Wei, REN Jian-hua, JIN Wen-rui. Study on the adsorption-catalysis voltammetry of cobalt(II)-dimethyigoxime system in the presence of sodinm nitrite [J]. Journal of Zhejiang Institute of Science and Technology, 1991, 19(1): 82–89. (in Chinese)Google Scholar
  31. [31]
    Huazhong Normal University. Analytical chemistry [M]. Fourth Edition (Volume 1). Beijing: Higher Education Press, 2011. (in Chinese)Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hong-qiu Zhu (朱红求)
    • 1
  • Juan Du (杜娟)
    • 2
  • Yong-gang Li (李勇刚)
    • 1
    Email author
  • Tai-ming Zhang (张泰铭)
    • 2
  • Fei Cheng (程菲)
    • 1
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Chemistry and Chemical EngineeringCentral South UniversityChangshaChina

Personalised recommendations