Journal of Central South University

, Volume 26, Issue 1, pp 106–119 | Cite as

Design of wearable hand rehabilitation glove with soft hoop-reinforced pneumatic actuator

  • Zhong-sheng Sun (孙中圣)Email author
  • Zhong-hua Guo (郭钟华)
  • Wei Tang (唐威)


Traditional hand rehabilitation gloves usually use electrical motor as actuator with disadvantages of heaviness, bulkiness and less compliance. Recently, the soft pneumatic actuator is demonstrated to be more suitable for hand rehabilitation compared to motor because of its inherent compliance, flexibility and safety. In order to design a wearable glove in request of hand rehabilitation, a soft hoop-reinforced pneumatic actuator is presented. By analyzing the influence of its section shape and geometrical parameters on bending performance, the preferred structure of actuator is achieved based on finite element method. An improved hoop-reinforced actuator is designed after the fabrication and initial measurement, and its mathematical model is built in order to quickly obtain the bending angle response when pressurized. A series of experiment about bending performance are implemented to validate the agreement between the finite element, mathematical and experimental results, and the performance improvement of hoop-reinforced actuator. In addition, the designed hand rehabilitation glove is tested by measuring its output force and actual wearing experience. The output force can reach 2.5 to 3 N when the pressure is 200 kPa. The research results indicate that the designed glove with hoop-reinforced actuator can meet the requirements of hand rehabilitation and has prospective application in hand rehabilitation.

Key words

pneumatic soft actuator hoop-reinforced hand rehabilitation 



传统的手部康复手套通常以电机作为驱动器,具有体积大,笨重和柔顺性差的缺点。近年来, 柔性气动驱动器由于其内在的柔顺性、灵活和安全等优点,被认为相对于传统的电机驱动更适合用于 手部医疗康复。为了设计一个满足手部康复需求的可穿戴式康复手套,提出了一种加箍型的柔性气动 驱动器。基于有限元分析方法,通过分析截面形状和几何尺寸参数对于驱动器弯曲性能的影响得到驱 动器优选的结构形状和结构参数。在驱动器制作和初步测试基础上,制作改进型的加箍柔性气动驱动 器。为更快的分析驱动器在充气时弯曲角度的响应,建立加箍型驱动器的数学模型;并且为了验证有 限元分析、数学模型和实验结果之间的一致性以及加箍型柔性驱动器的性能提高,对驱动器进行一系 列的弯曲角度和输出力的性能测试实验。此外,对设计的基于加箍型柔性驱动器的可穿戴式手部康复 手套进行输出力的测试和实际佩戴体验。当压力为200 kPa 时,康复手套能够输出2.5~3 N 的力。研 究结果表明设计的基于加箍型柔性驱动器的可穿戴式手部康复手套能够满足手部康复的需求并具有 很好的应用前景。


气动 柔性驱动器 加箍型 手部康复 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    REINKENSMEYER D, EMKEN J, CRAMER S. Robotics, motor learning, and neurologic recovery [J]. Annual Review of Biomedical Engineering, 2004(6): 497–525.Google Scholar
  2. [2]
    BORBONI A, VILLAFANE J H, MULLÈ C, VALDES K, FAGLIA R, TAVEGGIA G, NEGRINI S. Robot-assisted rehabilitation of hand paralysis after stroke reduces wrist edema and pain: A prospective clinical trial [J]. Journal of Manipulative and Physiological Therapeutics, 2017, 40(1): 21–30.Google Scholar
  3. [3]
    WORSNOPP T T, PESHKIN M A, COLGATE J E, KAMPER D G. An actuated finger exoskeleton for hand rehabilitation following stroke [C]//IEEE 10th International Conference on Rehabilitation Robotics. Noordwijk, Netherlands, 2007: 896–901.Google Scholar
  4. [4]
    LAMBERCY O, DOVAT L, GASSERT R, BURDET E, TEO C L, MILNER T. A haptic knob for rehabilitation of hand function [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 356–366.Google Scholar
  5. [5]
    RIENER R, FREY M, PROLL T. Phantom-based multimodal interactions for medical education and training: The Munich knee joint simulator [J]. IEEE Transactions on Information Technology in Biomedicine, 2004, 8(2): 208–216.Google Scholar
  6. [6]
    SUZUKI R, EGAWA M, YAMADA Y, NAKAMURA T. Development of a 1-DOF wearable force feedback device with soft actuators and comparative evaluation of the actual objects and virtual objects in the AR space [C]// 14th International Conference on Control, Automation, Robotics & Vision. Phuket, Thailand, 2016: 1–6.Google Scholar
  7. [7]
    LI J. Portable haptic feedback for training and rehabilitation [D]. Stanford: Stanford University, 2009.Google Scholar
  8. [8]
    ADAMOVICH S V, FLUE G G, MATHAI A, QIU Q Y, LEWIS J, MERIANS A S. Design of a complex virtual reality simulation to train finger motion for persons with hemiparesis: a proof of concept study [J]. Journal of Neuro Engineering and Rehabilitation, 2009, 17: 6–28.Google Scholar
  9. [9]
    CHIRI A V, VITIELLO N, GIOVACCHINI N, ROCCELLA F, VECCHI F, CARROZZA M C. Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation [J]. IEEE/ASME Trans Mechatronics, 2012, 17(5): 884–894.Google Scholar
  10. [10]
    BOUZIT M, BURDEA G. The rutgers master II-new design force-feedback glove [J]. IEEE/ASME Transactions on Mechatronics, 2002, 7(2): 256–263.Google Scholar
  11. [11]
    JONES C L, WANG F, MORRISON R, SARKAR N, KAMPER D G. Design and development of the cable actuated finger exoskeleton for hand rehabilitation following stroke [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(1): 131–140.Google Scholar
  12. [12]
    LI J T, WANG S, WANG J, ZHENG R Y, ZHANG Y R, CHEN Z Y. Development of a hand exoskeleton system for index finger rehabilitation [J]. Chinese Journal of Mechanical Engineering, 2012, 25(2): 223–233.Google Scholar
  13. [13]
    ZHANG H Y, WANG Y Q, WANG Y M, FUH J Y H, KUMAR A S. Design and analysis of soft grippers for hand rehabilitation [C]// Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference. Los Angeles, CA, 2017: 1–10.Google Scholar
  14. [14]
    YAP H K, GOH J C H, YEOW R C H. Design and Characterization of soft actuator for hand rehabilitation application [C]// 6th European Conference of the International Federation for Medical and Biological Engineering. Dubrovnik, Croatia, 2014: 367–370.Google Scholar
  15. [15]
    ZHANG J, WANG H, TANG J, GUO H. Modeling and design of a soft pneumatic finger for hand rehabilitation [C]// Proceeding of the 2015 IEEE International Conference on Information and Automation. Lijiang, China, 2015: 2460–2465.Google Scholar
  16. [16]
    POLYGERINOS P, GALLOWAY K C, SAVAGE E, HERMAN M. Soft robotic glove for hand rehabilitation and task specific training [C]// IEEE International Conference on Robotics and Automation. Seattle, Washington, 2015: 1913–1919.Google Scholar
  17. [17]
    AGARWAL G, BESUCHET N, AUDERGON B, PAIK J. Stretchable materials for robust soft actuators towards assistive wearable devices [J]. Scientific Reports, 2016, 6(1): 1–8Google Scholar
  18. [18]
    AINLA A, VERMA M S, YANG D, WHITESIDES G M. Soft, rotating pneumatic actuator [J]. Soft Robotics, 2017, 4(3): 297–304.Google Scholar
  19. [19]
    TONDU B, LOPEZ P. Modeling and control of McKibben artificial muscle robot actuators [J]. IEEE Control Systems, 2000, 20(2): 15–38.Google Scholar
  20. [20]
    NORITSUGU T, KUBOTA M, YOSHIMATSU S. Development of pneumatic rotary soft actuator made of silicone rubber [J]. Journal of Robotics & Mechatronics, 2001, 13(1): 17–22.Google Scholar
  21. [21]
    POLYGERINOS P, WANG Z, GALLOWAY K C, WOOD R J, WALSH C J. Soft robotic glove for combined assistance and at-home rehabilitation [J]. Robotics and Autonomous Systems, 2015, 73: 135–143.Google Scholar
  22. [22]
    POLYGERINOS P, WANG Z, OVERVELDE J T B, GALLOWAY K C, WOOD R S, BERTOLDI K, WALSH C J. Modeling of soft fiber-reinforced bending actuators [J]. IEEE Transactions on Robotics, 201, 31(3): 778789.Google Scholar
  23. [23]
    WANG Z, POLYGERINOS P, OVERVELDE J T B, GALLOWAY K C, BERTOLDI K, WALSH C J. Interaction forces of soft fiber reinforced bending actuators [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 717–727.Google Scholar
  24. [24]
    POLYGERINOS P, LYNE S, WANG Z, NICOLINI F, MOSADEGH B. Towards a soft pneumatic glove for hand rehabilitation [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Tokyo, Japan, 2013: 1512–1517.Google Scholar
  25. [25]
    UDUPA G, SREEDHARAN P, DINESH P S, KIM D. Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper [J]. Journal of Robotics, 2014, 2014: 1–11.Google Scholar
  26. [26]
    REHMAN T, FAUDZI A, DEWI D, SUZUMORI K, RAZIF M. Design and analysis of bending motion in single and dual chamber bellows structured soft actuators [J]. Jurnal Teknologi (Sciences & Engineering), 2016, 78: 17–23.Google Scholar
  27. [27]
    SHAPIROA Y, WOLFA A, GABORB K. Bi-bellows: Pneumatic bending actuator [J]. Sensors and Actuators A: Physical, 2011(11): 1–11.Google Scholar
  28. [28]
    WANG Z K, SHINICHI H. Soft gripper dynamics using a line-segment model with an optimization-based parameter identification method [J]. IEEE Robotics and Automation Letters, 2017, 2(2): 624–631.Google Scholar
  29. [29]
    HAO Y F, WANG T M, REN Z Y, GONG Z Y, WANG H, YANG X B, GUAN S Y, WEN L. Modeling and experiments of a soft robotic gripper in amphibious environments [J]. International Journal of Advanced Robotic Systems, 2017, 14(3): 1–12Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.State Key Laboratory of Fluid Power Transmission and ControlZhejiang UniversityHangzhouChina

Personalised recommendations