Advertisement

Journal of Central South University

, Volume 26, Issue 1, pp 25–42 | Cite as

Microstructure and mechanical properties of dissimilar resistance spot welded DP1000–QP1180 steel sheets

  • Imren Ozturk Yilmaz
  • Abdullah Yasin Bilici
  • Hakan AydinEmail author
Article
  • 10 Downloads

Abstract

In this study, the effect of welding parameters on the microstructure and mechanical properties of the dissimilar resistance spot welded DP1000–QP1180 joints was investigated. Heat affected zone (HAZ) width of QP1180 side was smaller than that of DP1000 side. HAZ width and indentation depth increased with increasing welding current and welding time. The nugget size increased with increasing welding current whereas it increased at lower currents and decreased at higher currents with increasing welding time. The lowest hardness was on the DP1000 side. On the QP1180 side, the center of HAZ had the peak hardness. With increasing welding current, hardness values throughout the weld zone decreased and the tensile shear load increased. At lower welding currents, the welding time did not affect the tensile shear load. Tensile elongation decreased with the increase of welding time, whereas there is no relationship between the welding current and elongation. The spot-welded joints having higher strength exhibited a more ductile fracture characteristic.

Key words

DP1000 steel QP1180 steel electrical resistance spot welding microstructure mechanical properties 

电阻点焊异质DP1000–QP1180 钢板的组织和力学性能

摘要

研究了焊接参数对电阻点焊DP1000–QP1180 异质接头组织和力学性能的影响。QP1180 侧的热 影响区宽度比DP1000 侧的小。热影响区的宽度和压痕深度随着焊接电流增大和焊接时间的延长而增 大。熔核尺寸随着焊接电流的增大而增大,但在低电流条件下,熔核尺寸随着焊接时间的延长而增大, 在高电流条件下,熔核尺寸随着焊接时间的延长而减小。DP1000 侧的硬度最低。在QP1180 侧,热影 响区中心硬度最高。随着焊接电流的增大,焊缝区硬度降低,拉伸剪切载荷增大。在较低的焊接电流 下,焊接时间对拉伸剪切载荷没有影响。伸长率随焊接时间的延长而减小,而焊接电流与伸长率之间 没有关系。强度较高的点焊接头具有较强的韧性断裂特性。

关键词

DP1000 钢 QP1180 钢 电阻点焊 微观结构 力学性能 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    KWON O, LEE K Y, KIM G S, CHIN K G. New trends in advanced high strength steel developments for automotive application [J]. Material Science Forum, 2010, 638–642: 136–141. DOI: 10.4028/www.scientific.net/MSF.638-642. 136.Google Scholar
  2. [2]
    KUZIAK R, KAWALLA R, WAENGLER S. Advanced high strength steels for automotive industry [J]. Archives of Civil and Mechanical Engineering, 2008, 8(2): 103–117. DOI: 10.1016/S1644-9665(12)60197-6.Google Scholar
  3. [3]
    ROCHA I, MACHADO I, MAZZAFERRO C. Mechanical and metallurgical properties of DP 1000 steel square butt welded joints with GMAW [J]. International Journal of Engineering & Technology, 2015, 4(1): 26–34. DOI: 10. 14419/ijet.v4i1.3928.Google Scholar
  4. [4]
    AYDIN H. The mechanical properties of dissimilar resistance spot-welded DP600-DP1000 steel joints for automotive applications [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2015, 229(5): 599–610. DOI: 10.1177/ 0954407014547749.Google Scholar
  5. [5]
    KO Y G, LEE C W, NAMGUNG S, SHIN D H. Strain hardening behavior of nanostructured dual-phase steel processed by severe plastic deformation [J]. Journal of Alloys and Compounds, 2010, 504(1): 452–455. DOI: 10. 1016/j.jallcom.2010.02.109.Google Scholar
  6. [6]
    XIA M, BIRO E, TIAN Z, NORMAN ZHOU Y. Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels [J]. ISIJ International, 2008, 48(6): 809–814. DOI: 10.2355/isijinternational.48.809.Google Scholar
  7. [7]
    POURANVARI M, MARASHI S P H. Key factors influencing mechanical performance of dual phase steel resistance spot welds [J]. Science and Technology of Welding and Joining, 2010, 15(2): 149–155. DOI: 10.1179/ 136217109X12590746472535.Google Scholar
  8. [8]
    MOLAEI M J, EKRAMI A. The effect of dynamic strain aging on fatigue properties of dual phase steels with different martensite morphology [J]. Materials Science and Engineering A, 2009, 527(1, 2): 235–238. DOI: 10.1016/ j.msea.2009.08.005.Google Scholar
  9. [9]
    CHEN D L, WANG Z G, JIANG X X, AI S H, SHIH C H. The dependence of near-threshold fatigue crack growth on microstructure and environment in dual-phase steels [J]. Materials Science and Engineering A, 1989, 108: 141–151. DOI: 10.1016/0921-5093(89)90415-2.Google Scholar
  10. [10]
    WANG J, YANG L, SUN M, LIU T, LI H. A study of the softening mechanisms of laser-welded DP1000 steel butt joints [J]. Materials and Design, 2016, 97: 118–125. DOI: 10.1016/j.matdes.2016.02.071.Google Scholar
  11. [11]
    KEELER S, KIMCHI M. Advanced high-strength steels application guidelines version 5.0(R), 2014. [EB/OL] [2017-10-16]. http://309fbf2c62e8221fbaf0-b80c17cbaf20104b072d586b316c6210.r88.cf1.rackcdn.com/AHSS_Guidelines_V5.0_20140514.pdf Google Scholar
  12. [12]
    ANAND D, CHEN D L, BHOLE S D, ANDREYCHUK P, BOUDREAU G. Fatigue behavior of tailor (laser)-welded blanks for automotive applications [J]. Materials Science and Engineering A, 2006, 420(1, 2): 199–207. DOI: 10.1016/ j.msea.2006.01.075.Google Scholar
  13. [13]
    PARKES D, XU W, WESTERBAAN D, NAYAK S S, ZHOU Y, GOODWIN F, BHOLE S, CHEN D L. Microstructure and fatigue properties of fiber laser welded dissimilar joints between high strength low alloy and dual-phase steels [J]. Materials and Design, 2013, 51: 665–675. DOI: 10.1016/j.matdes.2013.04.076.Google Scholar
  14. [14]
    WANG L, SPEER J G. Quenching and partitioning steel heat treatment [J]. Metallography, Microstructure, and Analysis, 2013, 2: 268–281. DOI: 10.1007/s13632-013-0082-8.Google Scholar
  15. [15]
    SPENA P R, DE MADDIS M, D’ANTONIO G, LOMBARDI F. Weldability and monitoring of resistance spot welding of Q&P and TRIP steels [J]. Metals, 2016, 6(11): 270. DOI: 10.3390/met6110270.Google Scholar
  16. [16]
    SPEER J, MATLOCK D K, DE COOMAN B C, SCHROTH J G. Carbon partitioning into austenite after martensite transformation [J]. Acta Materialia, 2003, 51(9): 2611–2622. DOI: 10.1016/S1359-6454(03)00059-4.Google Scholar
  17. [17]
    SPEER J G, DE MOOR E, FINDLEY K O, MATLOCK D K, DE COOMAN B C, EDMONDS D V. Analysis of microstructure evolution in quenching and partitioning automotive sheet steel [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42: 3591–3601. DOI: 10.1007/s11661-011-0869-7.Google Scholar
  18. [18]
    AYDIN H, TUTAR M, BAYRAM A. The influence of welding time on mechanical properties of resistance spot welded TWIP steel sheets [C]// XIII International Scientific Congress Machines, Technologies, Materials. Varna: Summer Session, 2016: 16–19. http://mtmcongress.com/proceedngs/2016/Summer/2/04.THE%20INFLUENCE%20OF%20WELDING%20TIME%20ON%20MECHANICAL%20PROPERTIES%20OF%20RESISTANCE%20SPOT%20WELDED%20TWIP%20STEEL%20SHEETS.pdf.Google Scholar
  19. [19]
    TUMULURU M. Resistance spot welding techniques for advanced high-strength steels (AHSS) [M]// Welding and Joining of Advanced High Strength Steels (AHSS). Amsterdam: Elsevier Ltd, 2015.Google Scholar
  20. [20]
    CHABOK A, VAN DER A A E, DE HOSSON J T M, PEI Y T. Mechanical behavior and failure mechanism of resistance spot welded DP1000 dual phase steel [J]. Materials and Design, 2017, 124: 171–182. DOI: 10.1016/j.matdes. 2017.03.070.Google Scholar
  21. [21]
    NOH W R, KIM W J, YANG X, KANG M J, LEE M G, CHUNG K S. Simple and effective failure analysis of dissimilar resistance spot welded advanced high strength steel sheets [J]. International Journal of Mechanical Sciences, 2017, 121: 76–89. DOI: 10.1016/j.ijmecsci.2016.12.006.Google Scholar
  22. [22]
    PAKKANEN J, VALLANT R, KICIN M. Experimental investigation and numerical simulation of resistance spot welding for residual stress evaluation of DP1000 steel [J]. Weld World, 2016, 60(3): 393–402. DOI: 10.1007/s40194- 016-0301-4.Google Scholar
  23. [23]
    WANG B, DUAN Q Q, YAO G, PANG J C, LI X W, WANG L, ZHANG Z F. Investigation on fatigue fracture behaviors of spot welded Q&P980 steel [J]. International Journal of Fatigue, 2014, 66: 20–28. DOI: 10.1016/j.ijfatigue.2014. 03.004.Google Scholar
  24. [24]
    TAMIZI M, POURANVARI M, MOVAHEDI M. Welding metallurgy of martensitic advanced high strength steels during resistance spot welding [J]. Science and Technology of Welding and Joining, 2017, 22(4): 327–335. DOI: 10.1080/13621718.2016.1240979.Google Scholar
  25. [25]
    POURANVARI M. Understanding the factors controlling the interfacial failure strength of advanced high-strength steel resistance spot welds: Hardness vs fracture toughness [J]. Science and Technology of Welding and Joining, 2018, DOI: 10.1080/13621718.2017.1421303.Google Scholar
  26. [26]
    KONG J P, KANG C Y. Effect of alloying elements on expulsion in electric resistance spot welding of advanced high strength steels [J]. Science and Technology of Welding and Joining, 2016, 21(1): 32–42. DOI: 10.1179/ 1362171815Y.0000000057.Google Scholar
  27. [27]
    KHAN M I, KUNTZ M L, ZHOU Y. Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels [J]. Science and Technology of Welding and Joining, 2008, 13(3): 294–304. DOI: 10.1179/174329308X271733.Google Scholar
  28. [28]
    WEI S T, LIU R D, LV D, LIN L, XU R J, GUO J Y, WANG K Q, LU X F. Weldability and mechanical properties of similar and dissimilar resistance spot welds of three-layer advanced high strength steels [J]. Science and Technology of Welding and Joining, 2015, 20(1): 20–26. DOI: 10.1179/ 1362171814Y.0000000250.Google Scholar
  29. [29]
    LOPEZ-CORTEZ V H, REYES-VALDES F A. Understanding resistance spot welding of advanced high-strength steels [J]. Welding Journal, 2008, 87(12): 36–40. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.1689&rep=rep1&type=pdf.Google Scholar
  30. [30]
    HAN Z, INDACOCHEA J E, CHEN C H, BHAT S. Weld nugget development and integrity in resistance spot welding of high-strength cold-rolled sheet steels [J]. Welding Journal, 1993, 72: 209–216. https://app.aws.org/wj/supplement/WJ_1993_05_s209.pdf.Google Scholar
  31. [31]
  32. [32]
    VANIMISETTI S K, SIGLER D R. Improving fatigue performance of spot welds in advanced high-strength steels [J]. Welding Journal, 2014, 93(5): 153–161. https://www.researchgate.net/publication/279036854_Improving_Fatigue_Performance_of_Spot_Welds_in_Advanced_High-Strength_Steels.Google Scholar
  33. [33]
    RADAKOVIC D J, TUMULURU M. An evaluation of the cross-tension test of resistance spot welds in high-strength dual-phase steels [J]. Welding Journal, 2012, 91(1): 8–15. http://files.aws.org/wj/supplement/WJ_2012_01_s8.pdf.Google Scholar
  34. [34]
    HERNANDEZ B V H, KUNTZ M L, KHAN M I, ZHOU Y. Influence of microstructure and weld size on mechanical behaviour of dissimilar ahss resistance spot welds [J]. Science and Technology of Welding and Joining, 2008, 13(8): 769–776. DOI: 10.1179/136217108X325470.Google Scholar
  35. [35]
    POURANVARI M, MOUSAVIZADEH S M, MARASHI S P H, GOODARZI M, GHORBANI M. Influence of fusion zone size and failure mode on mechanical performance of dissimilar resistance spot welds of AISI 1008 low carbon steel and DP600 advanced high strength steel [J]. Materials and Design, 2011, 32(3): 1390–1398. DOI: 10.1016/j.matdes. 2010.09.010.Google Scholar
  36. [36]
    SAFANAMA D S, MARASHI S P H, POURANVARI M. Similar and dissimilar resistance spot welding of martensitic advanced high strength steel and low carbon steel: metallurgical characteristics and failure mode transition [J]. Science and Technology of Welding and Joining, 2012, 17(4): 288–294. DOI: 10.1179/1362171812Y.0000000006.Google Scholar
  37. [37]
    POURANVARI M. Susceptibility to interfacial failure mode in similar and dissimilar resistance spot welds of DP600 dual phase steel and low carbon steel during cross-tension and tensile-shear loading conditions [J]. Materials Science and Engineering A, 2012, 546: 129–138. DOI: 10.1016/ j.msea.2012.03.040.Google Scholar
  38. [38]
    KHAN M S, BHOLE S D, CHEN D L, BIRO E, BOUDREAU G, DEVENTER J V. Welding behaviour, microstructure and mechanical properties of dissimilar resistance spot welds between galvannealed HSLA350 and DP600 steels [J]. Science and Technology of Welding and Joining, 2009, 14(7): 616–625. DOI: 10.1179/136217109X12464549883295.Google Scholar
  39. [39]
    WEI S T, LV D, LIU R D, LIN L, XU R J, GUO J Y, WANG K Q. Similar and dissimilar resistance spot welding of advanced high strength steels: Welding and heat treatment procedures, structure and mechanical properties [J]. Science and Technology of Welding and Joining, 2014, 19(5): 427–435. DOI: 10.1179/1362171814Y.0000000211.Google Scholar
  40. [40]
    NOH W, KIM W, YANG X, KANG M, LEE M G, CHUNG K. Simple and effective failure analysis of dissimilar resistance spot welded advanced high strength steel sheets [J]. International Journal of Mechanical Sciences, 2017, 121: 76–89. DOI: 10.1016/j.ijmecsci.2016.12.006.Google Scholar
  41. [41]
    ASTM E8/E8M-16a. Standard Test Methods for Tension Testing of Metallic Materials [S]. ASTM International, West Conshohocken, PA, 2016, www.astm.org. DOI: 10.1520/ E0008_E0008M-16A.Google Scholar
  42. [42]
    AWS D8.9M:2012. An American National Standard. Test Methods for Evaluating the Resistance Spot Welding Behavior of Automotive Sheet Steel Materials [S]. https://pubs.aws.org/p/1067/d89m2012-test-methods-for-evaluating-the-resistance-spot-welding-behavior-of-automotive-sheet-steel-materials.
  43. [43]
    KUCEROVA L, OPATOVÁ K, JANDOVÁ A. Metallography of AHSS steels with retained austenite [EB/OL]. [2017-06-28]. http://www.microscopy7.org/book/455-463.pdf.
  44. [44]
    DANCETTE S, FABRÈGUE D, MASSARDIER V, MERLIN J, DUPUY T, BOUZEKRI M. Experimental and modeling investigation of the failure resistance of Advanced High Strength Steels spot welds [J]. Engineering Fracture Mechanics, 2011, 78(10): 2259–2272. DOI: 10.1016/ j.engfracmech.2011.04.013.Google Scholar
  45. [45]
    ZHANG W. Design and implementation of software for resistance welding process simulations [J]. SAE Technical Papers, 2003, 112: 105–113. DOI: 10.4271/2003-01-0978.Google Scholar
  46. [46]
    SAHA D C, CHANG I, PARK Y-D. Heat-affected zone liquation crack on resistance spot welded TWIP steels [J]. Materials Characterization, 2014, 93: 40–51. DOI: 10.1016/ j.matchar.2014.03.016.Google Scholar
  47. [47]
    British Iron and Steel Research Association, Metallurgy (General) Division, Thermal Treatment Sub-Committee. Physical constants of some commercial steels at elevated temperatures: Based on measurements made at the National Physical Laboratory [M]. London: Teddington. Butterworth, 1953. https://trove.nla.gov.au/work/19508921?selectedversion=NBD4026909.
  48. [48]
    SMITHELLS C J, BRANDES E A, BROOK G B. Smithells Metals Reference Book [M]. 7th Ed. Oxford: Butterworth-Heinemann, 1992. http://pmt.usp.br/academic/martoran/notassolidificacao/Smithells%20Metals%20Reference%20Book%207e.pdf.Google Scholar
  49. [49]
    PEET M J, HASAN H S, BHADESHIA H K D H. Prediction of thermal conductivity of steel [J]. International Journal of Heat and Mass Transfer, 2011, 54(11, 12): 2602–2608. DOI: 10.1016/j.ijheatmasstransfer.2011.01.025.zbMATHGoogle Scholar
  50. [50]
    WILZER J, LUDTKE F, WEBER S, THEISEN W. The influence of heat treatment and resulting microstructures on the thermophysical properties of martensitic steels [J]. Journal of Materials Science, 2013, 48(24): 8483–8492. DOI: 10.1007/s10853-013-7665-2.Google Scholar
  51. [51]
    GHOSH R N. Structural steel II [L]. Lecture 39, Indian Institute of Technology Kharagpur. [2017-08-11]. http://nptel.ac.in/courses/113105023/Lecture39.pdf.
  52. [52]
    GIBSON J L, JIMÉNEZ C, GARCÍA DE ANDRÉS C, DANÓN C A, LUPPO M I. Evaluation of the Abnormal Grain Growth in an ASTM 213 Grade T91 Steel [J]. Procedia Materials Science, 2015, 8: 1118–1126. DOI: 10.1016/ j.mspro.2015.04.175.Google Scholar
  53. [53]
    KLUEH R L. Elevated-temperature ferritic and martensitic steels and their application to future nuclear reactors [J]. International Materials Review, 2005, 50(5): 287–310. DOI: 10.1179/174328005X41140.Google Scholar
  54. [54]
    MAROPOULOS S, KARAGIANNIS S, RIDLEY N. Factors affecting prior austenite grain size in low alloy steel [J]. Journal of Materials Science, 2007, 42(4): 1309–1320. DOI: doi.org/10.1007/s10853-006-1191-4.Google Scholar
  55. [55]
    YAN P, BHADESHIA H K D H. The austenite–ferrite transformation in enhanced-niobium, low-carbon steel [J]. Materials Science and Technology, 2015, 31(9): 1066–1076. DOI: 10.1179/1743284714Y.0000000673.Google Scholar
  56. [56]
    ZENER C. Grains, phases, and interfaces: An interpretation of microstructure [J]. Transactions of the AIME, 1949, 175: 15–51.Google Scholar
  57. [57]
    LECHUCK S J. A study of austenite grain growth in a Ti-Nb HSLA steel [D]. The University of British Columbia, 2000. https://open.library.ubc.ca/media/download/pdf/831/1.0078671/2.Google Scholar
  58. [58]
    OIKAWA T, ENOMOTO M. Distribution of carbide particles and its influence on grain growth of ferrite in Fe-C alloys containing B and V [C]// 1st International Conference on 3D Materials Science. Seven Springs, Pennsylvania, USA. 2012: 107–112. DOI: 10.1007/978-3-319-48762-5_16.Google Scholar
  59. [59]
    OIKAWA T, ZHANG J J, ENOMOTO M, ADACHI Y. Influence of carbide particles on the grain growth of ferrite in an Fe–0.1C–0.09V alloy [J]. ISIJ International, 2013, 53(7): 1245–1252. DOI: 10.2355/isijinternational.53.1245.Google Scholar
  60. [60]
    PERSSON E. An investigation on steel grades 100Cr6 and 100CrMnMoSi8-4-6 [R]. Degree project in Materials design and engineering Second cycle Stockholm, Sweden, 2014.Google Scholar
  61. [61]
    GLADMAN T, PICKERING F B. Grain coarsening of austenite [J]. Journal of the Iron and Steel Institute, 1967, 205: 653–664.Google Scholar
  62. [62]
    KUNDU A. Austenite grain boundary pinning during reheating by mixed AlN and Nb(C,N) particles [J]. ISIJ International, 2014, 54(3): 677–684. DOI: 10.2355/ isijinternational.54.677.Google Scholar
  63. [63]
    GOODARZI M, MARASHI S P H, POURANVARI M. Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel [J]. Journal of Materials Processing Technology, 2009, 209(9): 4379–4384. DOI: 10.1016/j.jmatprotec.2008.11.017.Google Scholar
  64. [64]
    OZTURK YILMAZ I, BILICI A Y, AYDIN H. An investigation into the effect of welding parameters on mechanical properties of dissimilar resistance spot welded DP1000–QP1180 steel joints [C]// The Proceedings of Third International Iron and Steel Symposium. Karabuk: UDCS’17, 2017: 391–395.Google Scholar
  65. [65]
    ZHOU M, ZHANG H, HU S J. Relationships between quality and attributes of spot welds [J]. Welding Journal, 2003, 82: 72–77. http://ca.brainboxusa.info/downloads/reference/Relationships_Between_Quality_and_Attributes_of_Spot_Welds.pdf.Google Scholar
  66. [66]
    KRAJCARZ F, GOURGUES-LORENZON A F, LUCAS E, PINEAU A. Fracture toughness of the molten zone of resistance spot welds [J]. International Journal of Fracture, 2013, 181(2): 209–226. DOI: 10.1007/s10704-013-9836-1.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beycelik Gestamp Inc., BTSO Organized Industrial ZoneBursaTurkey
  2. 2.Department of Mechanical EngineeringUludag UniversityBursaTurkey

Personalised recommendations