Advertisement

Journal of Central South University

, Volume 25, Issue 12, pp 3098–3106 | Cite as

Transformation of β to α phase of isotactic polypropylene nucleated with nano styrene butadiene rubber-based β-nucleating agent under microwave irradiation

  • Nawadon PetchwattanaEmail author
  • Phisut Naknaen
  • Jakkid Sanetuntikul
Article
  • 5 Downloads

Abstract

This paper investigates the effect of microwave irradiation on the β to α phase transformation of the β-nucleated isotactic polypropylene (iPP). Ten microwave irradiation cycles was applied to the iPP and iPP modified with 0.3 wt% and 0.5 wt% β-NA, and the data at 2nd, 4th, 6th, 8th and 10th irradiation were reported. As expected, the sample temperature was found to increase with the irradiation time, by more than 130 °C, due to high frequency of microwave processing. This was the major factor that induced the β-phase transformation and structural change. Both the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) results indicated that β-phase was mainly transformed to α-phase and partially converted to the amorphous section. It was reflected as 1) the reduction of the enthalpy of β-crystal melting (ΔH), 2) the increased enthalpy of α-crystal melting (ΔH), 3) the decreased β-crystalline phase fraction (Kβ) and 4) the decrease of the overall degree of crystallinity (Xall). Under impact force, neat iPP showed a slight increase in the impact strength with the irradiation time, due to the increase of amorphous region. For the β-iPP, it decreased due to the reduction of the β-phase content.

Key words

polypropylene crystallization mechanical properties thermal properties 

微波辐照条件下基于纳米丁苯橡胶β 相形核剂的全同立构聚丙烯的β–α 相转变

摘要

本文研究了微波辐射对β-形核全同立构聚丙烯(iPP)β–α 相转变的影响。对iPP 及β-NA 修饰 的iPP 样品进行10 个周期的微波辐照,并采集第2、4、6、8 和10 周的数据。经过高频微波辐照, 样品的温度随着辐照时间的延长而升高,最高超过130℃,这也是导致β 相转变和结构变化的主要因 素。差示扫描量热法(DSC)和X 射线衍射(XRD)结果表明,β 相主要转化为α 相,部分转化为非 晶态相,具体表现为:1)β 相的熔化焓(ΔH)降低;2)α 相的熔化焓(ΔH)升高;3)β 相含 量(Kβ)减少;4)总体结晶度(Xall)降低。在冲击力作用下,纯iPP 的冲击强度随辐照时间的延长 略有提高,这是由于非晶态成分的增加。而对于β-iPP, 由于β 相含量减少,其冲击强度降低。

关键词

聚丙烯 结晶 机械性能 热性能 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LI J W, YANG K, SONG L, HAN L, FENG Y K. Non-isothermal crystallisation of polypropylene/hollow glass microspheres composites [J]. Plastics, Rubber and Composites, 2015, 44: 68–73. DOI: 10.1179/1743289814Y. 0000000121.CrossRefGoogle Scholar
  2. [2]
    CHANDRASEKARAN S, RAMANATHAN S, BASAK T. Microwave material processing-a review [J]. AIChE Journal, 2012, 58: 330–363. DOI: 10.1002/aic.12766.CrossRefGoogle Scholar
  3. [3]
    CLARK D E, FOLZ D C, WEST J K. Processing materials with microwave energy [J]. Materials Science and Engineering A, 2000, 287: 153–158. DOI: 10.1016/S0921-5093(00)00768-1.CrossRefGoogle Scholar
  4. [4]
    VENKATESH M S, RAGHAVAN G S V. An overview of microwave processing and dielectric properties of agri-food materials [J]. Biosystems Engineering, 2004, 88: 1–18. DOI: 10.1016/j.biosystemseng.2004.01.007.CrossRefGoogle Scholar
  5. [5]
    BURDICK D, COX N A, THOMPSON J E, BAILEY J S. Heating by microwave, hot air, and flowing steam to eliminate inoculated Salmonella from poultry feed [J]. Poultry Science, 1983, 62: 1780–1785. DOI: 10.3382/ps.0621780.CrossRefGoogle Scholar
  6. [6]
    PETCHWATTANA N, COVAVISARUCH S, SRIPANYA P. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene [J]. Journal of Alloys and Compounds, 2014, 582: 190–195. DOI: 10.1016/j.jallcom.2013.08.019.CrossRefGoogle Scholar
  7. [7]
    MAO H, LIU Y, LIU W, NIE M, WANG Q. Investigation of crystallisation and interfacial nature of polyhedral oligomeric silsesquioxane/polypropylene composites in the presence of β-nucleating agent [J]. Plastics, Rubber and Composites, 2017, 46: 322–328. DOI: 10.1080/14658011.2017.1350793.CrossRefGoogle Scholar
  8. [8]
    CHEN Z, KANG W, KANG J, CHEN J, YANG F, CAO Y, XIANG M. Non-isothermal crystallization behavior and melting behavior of Ziegler–Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent [J]. Polymer Bulletin, 2015, 72: 3283–3303. DOI: 10.1007/s00289-015-1466-5.CrossRefGoogle Scholar
  9. [9]
    LI X, WU H, WANG Y, BAI H, LIU L, HUANG T. Study on the β to α transformation of PP/POE blends with β-phase nucleating agent during the tensile deformation process [J]. Materials Science and Engineering A, 2010, 527: 531–538. DOI: 10.1016/j.msea.2009.08.007.CrossRefGoogle Scholar
  10. [10]
    XU W, MARTINA D C, ARRUDA E M. Finite strain response, microstructural evolution and β/α phase transformation of crystalline isotactic polypropylene [J]. Polymer, 2005, 46: 455–470. DOI: 10.1016/j.polymer. 2004.10.084.CrossRefGoogle Scholar
  11. [11]
    KOTEK J, KELNAR I, BALDRIAN J, RAAB M. Structural transformations of isotactic polypropylene induced by heating and UV light [J]. European Polymer Journal, 2004, 40: 2731–2738. DOI: 10.1016/j.eurpolymj.2004.07.017.CrossRefGoogle Scholar
  12. [12]
    GREGORIOU V G, KANDILIOTI G, BOLLAS S T. Chain conformational transformations in syndiotactic polypropylene/layered silicate nanocomposites during mechanical elongation and thermal treatment [J]. Polymer, 2005, 46: 11340–11350. DOI: 10.1016/j.polymer.2005. 10.026.CrossRefGoogle Scholar
  13. [13]
    ZHANG R H, SHI D, TJONG S C, LI R K Y. Study on the β to α transformation of polypropylene crystals in compatibilized blend of polypropylene/polyamide-6 [J]. Journal of Polymer Science: Polymer Physics Edition, 2007, 45: 2674–2681. DOI: 10.1002/polb.21287.CrossRefGoogle Scholar
  14. [14]
    SHANGGUAN Y G, SONG Y H, PENG M, LI B P, ZHENG Q. Formation of β-crystal from nonisothermal crystallization of compression-molded isotactic polypropylene melt [J]. European Polymer Journal, 2005, 41: 1766–1771. DOI: 10.1016/j.eurpolymj.2005.02.033.CrossRefGoogle Scholar
  15. [15]
    LI J X, CHEUNG W L, JIA D M. A study on the heat of fusion of β-polypropylene [J]. Polymer, 1999, 40: 1219–1222. DOI: 10.1016/S0032-3861(98)00345-0.CrossRefGoogle Scholar
  16. [16]
    JAIN S, GOOSSENS H, VAN DUIN M, LEMSTRA P. Effect of in situ prepared silica nano-particles on nonisothermal crystallization of polypropylene [J]. Polymer, 2005, 46: 8805–8818. DOI: 10.1016/j.polymer.2004.12.062.CrossRefGoogle Scholar
  17. [17]
    LI X, WU H, HUANG T, SHI Y, WANG Y, XIANG F, ZHOU Z. β/α transformation of β-polypropylene during tensile deformation: effect of crystalline morphology [J]. Colloid and Polymer Science, 2010, 288: 1539–1549. DOI: 10.1007/s00396-010-2275-x.CrossRefGoogle Scholar
  18. [18]
    RADHAKRISHNAN J, ICHIKAWA K, YAMADA K, TODA A, HIKOSAKA M. Nearly pure α2 form crystals obtained by melt crystallization of high tacticity isotactic polypropylene [J]. Polymer, 1998, 39: 2995–2997. DOI: 10.1016/S0032-3861(97)00617-4.CrossRefGoogle Scholar
  19. [19]
    BAI H, WANG Y, ZHANG Z, HAN L, LI Y, LIU L, ZHOU Z, MEN Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent [J]. Macromolecules, 2009, 42: 6647–6655. DOI: 10.1021/ma9001269.CrossRefGoogle Scholar
  20. [20]
    TORDJEMAN P, ROBERT C, MARIN G, GERARD P. The effect of α, β crystalline structure on the mechanical properties of polypropylene [J]. The European Physical Journal E, 2001, 4: 459–465. DOI: 10.1007/s101890170101.CrossRefGoogle Scholar
  21. [21]
    BAI H, WANG Y, SONG B, LI Y, LIU L. Detecting crystallization structure evolution of polypropylene injection-molded bar induced by nucleating agent [J]. Polymer Engineering and Science, 2008, 48: 1532–1541. DOI: 10.1002/pen.21125.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and TechnologySrinakharinwirot UniversityOngkharakThailand
  2. 2.Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and TechnologySrinakharinwirot UniversityOngkharakThailand
  3. 3.Faculty of Engineering and TechnologyKing Mongkut’s University of Technology North BangkokBankhai, RayongThailand

Personalised recommendations