Advertisement

Journal of Central South University

, Volume 25, Issue 12, pp 3075–3084 | Cite as

Microstructure and mechanical properties of dissimilar pinless friction stir spot welded 2A12 aluminum alloy and TC4 titanium alloy joints

  • Xia-wei Yang (杨夏炜)
  • Wu-yuan Feng (冯武渊)
  • Wen-ya Li (李文亚)Email author
  • Qiang Chu (褚强)
  • Ya-xin Xu (徐雅欣)
  • Tie-jun Ma (马铁军)
  • Wei-bing Wang (王卫兵)
Article
  • 6 Downloads

Abstract

The microstructure and mechanical properties of dissimilar pinless friction stir spot welded joint of 2A12 aluminum alloy and TC4 titanium alloy were evaluated. The results show that the joint of Al/Ti dissimilar alloys can be successfully attained through pinless friction stir spot welding (FSSW). The joint can be divided into three zones (SZ, TMAZ and HAZ). The microstructure of joint in Al alloy side changes significantly but it basically has no change in Ti alloy side. At the same rotation speed, the maximum load of welded joints gradually rises with the increase in dwell time. At the same dwell time, the maximum load of the welded joint increases with the increase of the rotational speed. In addition, optimal parameters were obtained in this work, and they are rotation speed of 1500 r/min, plunge speed of 30 mm/min, plunge depth of 0.3 mm and dwell time of 15 s. The fracture mode of welded joints is interfacial shear fracture. The microhardness of the joint on the Al side distributes in a typical “W” type and is symmetry along the weld center, but the distribution of the microhardness on the Ti side has no obvious change.

Key words

microstructure mechanical properties friction stir spot welded dissimilar joints 

2A12 铝合金与TC4 钛合金无针搅拌摩擦点焊组织及性能

摘要

本文针对2A12 铝合金与TC4 钛合金,采用无针搅拌摩擦点焊工艺研究了不同工艺参数下的异 质接头的组织及性能。研究结果表明,通过无针搅拌摩擦焊可以成功获得Al/Ti 异质合金接头,并且 接头可分为三个典型的区域:搅拌区、热力影响区和热影响区。Al 侧接头的微观组织变化比较显著, 而Ti 侧组织没有明显的变化。拉剪试验的结果表明,在相同的搅拌头旋转速度下,接头的最大拉剪 载荷随停留时间的增大而增大。在同一停留时间下,转速越大接头的最大拉剪载荷也越大。此外,在 转速1500 r/min、停留时间15 s 时接头的强度最高,接头的断裂模式为界面剪切断裂。显微硬度测试 结果显示,接头Al 侧的硬度值呈典型的“W”分布并沿接头中心线对称,而Ti 侧的硬度值没有明显的 变化。

关键词

显微组织 力学性能 搅拌摩擦点焊 异质接头 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SHEN J, LI Y, ZHANG T, PENG D, WANG D, XU D. Preheating friction stir spot welding of Mg/Al alloys in various lap configurations [J]. Science and Technology of Welding and Joining, 2015, 20(1): 1–10.CrossRefGoogle Scholar
  2. [2]
    LIU J, GOU WX, LIU W, YUE Z F. Effect of hammer peening on fatigue life of aluminum alloy 2A12-T4 [J]. Materials and Design, 2009, 30: 1944–1949.CrossRefGoogle Scholar
  3. [3]
    NIE Bao, ZHANG Zheng, ZHAO Zi, ZHONG Qun. Effect of anodizing treatment on the very high cycle fatigue behavior of 2A12-T4 aluminum alloy [J]. Materials and Design, 2013, 50: 1005–1010.CrossRefGoogle Scholar
  4. [4]
    XU Wei, ZHANG Zhen. Microstructure and mechanical properties of laser beam welded TC4/TA15 dissimilar joints [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3135–3146.CrossRefGoogle Scholar
  5. [5]
    JI Shu, LI Zheng, Wang YUE, MA Lin. Joint formation and mechanical properties of back heating assisted friction stir welded Ti-6Al-4V alloy [J]. Materials and Design, 2017, 113: 37–46.CrossRefGoogle Scholar
  6. [6]
    YAN Hong, ZHANG Ji, LI Lin, FENG Rui, LI Tian. Prediction of upper limit position of bedding separation overlying a coal roadway within an extra-thick coal seam [J]. Journal of Central South University, 2018, 25(2): 448–460.CrossRefGoogle Scholar
  7. [7]
    JI Shu, LI Zheng, ZHANG Li, WANG Yue. Eliminating the tearing defect in Ti-6Al-4V alloy joint by back heating assisted friction stir welding [J]. Materials Letters, 2017, 188: 21–24.CrossRefGoogle Scholar
  8. [8]
    SQUIRES L, LIM Y C, MILES M P, FENG Z. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6 [J]. Science and Technology of Welding and Joining, 2015, 20(3): 242–248.CrossRefGoogle Scholar
  9. [9]
    WU Sai, GHAFFARI B, HETRICK E, LI Mei, JIA Zhi, LIU Qing. Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3879–3885.CrossRefGoogle Scholar
  10. [10]
    TAO Jian, GONG Liang, LIU Cheng, ZHAO Yang. Multi-field dynamic modeling and numerical simulation of aluminum alloy resistance spot welding [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(12): 3066–3072.CrossRefGoogle Scholar
  11. [11]
    VENUKUMAR S, YALAGI S G, MUTHUKUMARAN S, KAILAS S V. Static shear strength and fatigue life of refill friction stir spot welded AA 6061-T6 sheets [J]. Science and Technology of Welding and Joining, 2014, 19(3): 214–223.CrossRefGoogle Scholar
  12. [12]
    ZHANG H, WANG D, XUE P, WU L H, NI D R, MA Z Y. Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel [J]. Materials & Design, 2016, 110: 802–810.CrossRefGoogle Scholar
  13. [13]
    KAMRAN A, FARHAD G. Influence of welding speed on corrosion behaviour of friction stir welded AA5086 aluminium alloy [J]. Journal of Central South University, 2016, 23(6): 1301–1311.CrossRefGoogle Scholar
  14. [14]
    WU L H, XUE P, XIAO B L, MA Z Y. Achieving superior low-temperature superplasticity for lamellar microstructure in nugget of a friction stir welded Ti-6Al-4V joint [J]. Scripta Materialia, 2016, 122: 26–30.CrossRefGoogle Scholar
  15. [15]
    LIU Hui, HU Yan, DOU Chao, SEKULIC D P. An effect of the rotation speed on microstructure and mechanical properties of the friction stir welded 2060-T8 Al-Li alloy [J]. Materials Characterization, 2017, 123: 9–19.CrossRefGoogle Scholar
  16. [16]
    LIU Hui, HU Yan, ZHAO Yun. Microstructural characteristics and formation mechanism of friction stir welds of SiC particulates reinforced Al–Si matrix composites [J]. Materials Letters, 2015, 158: 136–139.CrossRefGoogle Scholar
  17. [17]
    SUTTON M A, REYNOLDS A P, YANG Bang, Taylor R. Mode I fracture and microstructure for 2024-T3 friction stir welds [J]. Materials Science and Engineering A, 2003, 354(1, 2): 6–16.CrossRefGoogle Scholar
  18. [18]
    BAKAVOS D, PRANGNELL P B. Effect of reduced or zero pin length and anvil insulation on friction stir spot welding thin gauge 6111 automotive sheet [J]. Science and Technology of Welding and Joining, 2009, 14(5): 443–456.CrossRefGoogle Scholar
  19. [19]
    LI Wen, CHU Qiang, YANG Xia. Microstructure and morphology evolution of probeless friction stir spot welded joints of aluminum alloy [J]. Journal of Materials Processing Technology, 2017, 252: 69–80.CrossRefGoogle Scholar
  20. [20]
    YANG Xia, FENG Wu, LI Wen, XU Ya, CHU Qiang, MA Tie, WANG Wei. Numerical modelling and experimental investigation of thermal and material flow in probeless friction stir spot welding process of Al 2198-T8 [J]. Science and Technology of Welding and Joining, 2018, DOI: 10.1080/13621718.2018.1469832.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xia-wei Yang (杨夏炜)
    • 1
  • Wu-yuan Feng (冯武渊)
    • 1
  • Wen-ya Li (李文亚)
    • 1
    Email author
  • Qiang Chu (褚强)
    • 1
  • Ya-xin Xu (徐雅欣)
    • 1
  • Tie-jun Ma (马铁军)
    • 1
  • Wei-bing Wang (王卫兵)
    • 2
  1. 1.State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Friction Welding TechnologiesNorthwestern Polytechnical UniversityXi’anChina
  2. 2.China FSW CenterBeijingChina

Personalised recommendations