Journal of Central South University

, Volume 25, Issue 12, pp 2992–3003 | Cite as

Superior Au-adsorption performance of aminothiourea-modified waste cellulosic biomass

  • Fu-chun Wang (王福春)
  • Jun-mei Zhao (赵君梅)Email author
  • Wan-kun Wang (王万坤)
  • Hui-zhou Liu (刘会洲)


Waste cellulosic biomass obtains various applications due to low-cost and eco-benign characteristics. A general strategy is proposed for waste cellulosic biomass to be modified with dialdehyde functional groups as intermediates through periodate partial oxidation. Finally, aminothiourea-modified waste cellulosic biomass can be prepared through Schiff reaction. Waste corn stalk, cotton and paper as typical precursors, were used to prepare cellulosic biomass, abbreviated as AT-S, AT-C and AT-P, respectively, and their adsorption behaviors of Au(III) from the hydrochloric acid medium were investigated. The pseudo-second kinetics equation as well as the Langmuir isotherm equation can be used to depict the adsorption process, and the maximum adsorption capacities of Au(III) are 21.4, 19.0 and 3.28 mol/kg for AT-S, AT-C and AT-P at 298 K, respectively. The adsorption capacities of Au(III) on aminothiourea modified corn stalk (AT-S) is almost 357 times greater than that of raw corn stalk. To the best of our knowledge, AT-S has the highest adsorption capacity towards Au(III). AT-S also displays a superior separation selectivity towards Au(III) in the presence of Cu(II), Ni(II), Co(II), Pt(VI), Pd(II) and Rh(III). Furthermore, the characterization analysis of XRD, TG, SEM, TEM and FTIR confirms that AuCl4 has been reduced to elemental Au nanoparticles and deposit onto the surface of the biomass. It shows a prospect for waste corn stalk to be used to adsorb Au(III) from liquid phase and the possible fabrication of gold nanoparticles by a general adsorption process without any reductant.

Key words

adsorption reduction-deposition waste cellulosic biomass aminothiourea gold nanoparticles 

氨基硫脲功能化PGMA 及对金的吸附性能


纤维素基废弃生物质具有价格低廉和环境友好等优点,因而得到了广泛应用。本文提出了一种 纤维素基废弃生物质功能化的通用制备方法,即先通过NaIO4 选择性氧化将废弃生物质转化为含双醛 基的平台中间体,然后利用醛基特定的Schiff base 反应引入对金离子有优良配位能力的配基。以典型 的废弃纤维素基生物质,如玉米秸秆 (AT-S)、棉花 (AT-C) 和纸 (AT-P) 为原料制备了氨基硫脲修饰 的吸附剂。AT-S、AT-C 和AT-P 在298 K 下对Au(III) 的饱和吸附容量分别为21.4、19.0 和3.28 mol/kg, Au(III)吸附量与吸附剂中硫脲官能团的含量成正相关性。Au(III)的吸附符合准二级动力学吸附模型和 Langmuir 等温吸附模型。AT-S 对Au(III)的吸附量是玉米秸秆的357 倍,是目前文献中报道的有关Au(III) 吸附容量最高的吸附剂。AT-S 对Au(III)与其他金属如Cu(II)、Ni(II)、Co(II)、Pt(VI)、Pd(II)和Rh(III) 有着优良的分离选择性。采用XRD、TG、SEM、TEM 和FTIR 进行分析表征,结果表明吸附的AuCl4 被还原为Au0 纳米颗粒并沉积在AT-S 吸附剂表面。


吸附 还原-沉积 废弃纤维素基生物质 氨基硫脲 金纳米颗粒 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DAS N. Recovery of precious metals through biosorption — A review [J]. Hydrometallurgy, 2010, 103(1–4): 180–189.CrossRefGoogle Scholar
  2. [2]
    LI X B, YE J J, LIU Z H, QIU Y Q, LI L J, MAO S, WANG X C, ZHANG Q. Microwave digestion and alkali fusion assisted hydrothermal synthesis of zeolite from coal fly ash for enhanced adsorption of Cd(II) in aqueous solution [J]. Journal of Central South University, 2018, 25(1): 9–20.CrossRefGoogle Scholar
  3. [3]
    TIAN Q H, WANG X Y, MAO F F, GUO X Y. Absorption performance of DMSA modified Fe3O4@SiO2Core/Shell magnetic nanocomposite for Pb2+ Removal [J]. Journal of Central South University, 2018; 25(4): 709–718.CrossRefGoogle Scholar
  4. [4]
    LI J H, MIAO X X, CHEN X Y, LU L, YANG Y, FU Y Q, XIONG C H. Application and characterization of grafted polytetrafluoroethylene fiber for enhanced adsorption of Cu(II) in aqueous solutions [J]. Journal of Central South University, 2016, 23(10): 2513–2519.CrossRefGoogle Scholar
  5. [5]
    PANGENI B, PAUDYAL H, ABE M, INOUE K, KAWAKITA H, OHTO K, ADHIKARI B B, ALAM S. Selective recovery of gold using some cross linked polysaccharide gels [J]. Green Chem, 2012, 14(7): 1917–1927.CrossRefGoogle Scholar
  6. [6]
    GURUNG M, ADHIKARI B B, GAO X, ALAM S, INOUE K. Sustainability in the metallurgical industry: Chemically modified cellulose for selective biosorption of gold from mixtures of base metals in chloride media [J]. Ind Eng Chem Res, 2014, 53(20): 8565–8576.CrossRefGoogle Scholar
  7. [7]
    PARAJULI D, ADHIKARI C R, KAWAKITA H, KAJIYAMA K, OHTO K, INOUE K. Reduction and accumulation of Au(III) by grape waste: A kinetic approach [J]. React Funct Polym, 2008, 68(8): 1194–1199.CrossRefGoogle Scholar
  8. [8]
    XIONG Y, ADHIKARI C R, KAWAKITA H, OHTO K, INOUE K, HARADA H. Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine [J]. Bioresour Technol, 2009, 100(18): 4083–4089.CrossRefGoogle Scholar
  9. [9]
    FAN R, FENG X, GUAN X, ZHANG Q, LUO Z. Selective adsorption and recovery of Au(III) from three kinds of acidic systems by persimmon residual based bio-sorbent: A method for gold recycling from E-Wastes [J]. Bioresour Technol, 2014, 163(7): 161–171.Google Scholar
  10. [10]
    PING Y, XU M, QU R, HOU C, LIU X, JIANG Z, QIANG X. Uptake of Gold (III) from waste gold solution onto biomass-based adsorbents organophosphonic acid functionalized spent buckwheat hulls [J]. Bioresour Technol, 2013, 128(1): 36–43.Google Scholar
  11. [11]
    PANGENI B, PAUDYAL H, INOUE K, KAWAKITA H, OHTO K, ALAM S. An Assessment of gold recovery processes using cross-linked paper gel [J]. Journal of Chemical and Engineering Data, 2012, 57(3): 381–391.CrossRefGoogle Scholar
  12. [12]
    PANGENI B, PAUDYAL H, INOUE K, KAWAKITA H, OHTO K, ALAM S. Selective recovery of Gold(III) using cotton cellulose treated with concentrated sulfuric acid [J]. Cellulose, 2012, 19(2): 381–391.CrossRefGoogle Scholar
  13. [13]
    ZUO G, ORECCHIO S, MUHAMMED M. Facilitated transport of gold through a membrane via complexation to thiourea-based reagents [J]. Sep Sci Technol, 1996, 31(11): 1597–1613.CrossRefGoogle Scholar
  14. [14]
    ZUO G, MUHAMMED M. Thiourea-based coordinating polymers: Synthesis and binding to noble metals [J]. React Polym, 1995, 24(3): 165–181.CrossRefGoogle Scholar
  15. [15]
    YIRIKOGLU H, GULFEN M. Separation and recovery of Silver(I) ions from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin [J]. Sep Sci Technol, 2008, 43(2): 376–388.CrossRefGoogle Scholar
  16. [16]
    JACKSON E L, HUDSON C S. Application of the cleavage type of oxidation by periodic acid to starch and cellulose [J]. J Am Chem Soc, 1937, 59(10): 2049–2050.CrossRefGoogle Scholar
  17. [17]
    ZHENG L, DANG Z, YI X, ZHANG H. Equilibrium and kinetic studies of adsorption of Cd(II) from aqueous solution using modified corn stalk [J]. J Hazard Mater, 2010, 176(1–3): 650–656.CrossRefGoogle Scholar
  18. [18]
    CORDES E H, JENCKS W P. On the mechanism of schiff base formation and hydrolysis [J]. J Am Chem Soc, 1962, 84(5): 832–837.CrossRefGoogle Scholar
  19. [19]
    LANGMUIR I. The constitution and fundamental properties of solids and liquids. Part I. Solids [J]. J Am Chem Soc, 1916, 38(11): 2221–2295.CrossRefGoogle Scholar
  20. [20]
    FREUNDLICH H M F. Ueber die adsorption in lesungen [J]. Z Phys Chem, 1906, 57A: 385–470. (in Germany)Google Scholar
  21. [21]
    HE Z W, HE L H, YANG J, LÜ Q F. Removal and recovery of Au(III) from aqueous solution using a low-cost lignin-based biosorbent [J]. Ind Eng Chem Res, 2013, 52(11): 4103–4108.CrossRefGoogle Scholar
  22. [22]
    GURUNG M, ADHIKARI B B, KAWAKITA H, OHTO K, INOUE K, ALAM S. Recovery of Au(III) by using low cost adsorbent prepared from persimmon tannin extract [J]. Chem Eng J, 2011, 174(2, 3): 556–563.CrossRefGoogle Scholar
  23. [23]
    PARAJULI D, KHUNATHAI K, ADHIKARI C R, INOUE K, OHTO K, KAWAKITA H, FUNAOKA M, HIROTA K. Total recovery of gold, palladium, and platinum using lignophenol derivative [J]. Miner Eng, 2009, 22(13): 1173–1178.CrossRefGoogle Scholar
  24. [24]
    DONIA A M, ATIA A A, ELWAKEEL K Z. Recovery of Gold(III) and silver(I) on a chemically modified chitosan with magnetic properties [J]. Hydrometallurgy, 2007, 87(3, 4): 197–206.CrossRefGoogle Scholar
  25. [25]
    LAGERGREN S. Zur theorie der sogenannten adsorption gelöster stoffe [J]. K Sven Vetenskapsakad Handl, 1898, 24(4): 1–39. (in Swedish)Google Scholar
  26. [26]
    HO Y S. Adsorption of Heavy Metals from Waste Streams by Peat [D]. Birmingham, UK: University of Birmingham, 1995.Google Scholar
  27. [27]
    YU J, CHENG R. Precious metal extraction chemistry [M]. Beijing, China: Beijing Chemical Industry Press, 2010. (in Chinese)Google Scholar
  28. [28]
    SPEIGHT J G. Lange’s handbook of chemistry [M]. 16th Edition, New York: McGraw-Hil, 1998.Google Scholar
  29. [29]
    MATA Y N, TORRES E, BLÁZQUEZ M L, BALLESTER A, GONZÁLEZ F, MUÑOZ J A. Gold(III) biosorption and bioreduction with the brown alga fucus vesiculosus [J]. J Hazard Mater, 2009, 166(2, 3): 612–618.CrossRefGoogle Scholar
  30. [30]
    OGATA T, NAKANO Y. Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin [J]. Water Res, 2005, 39(18): 4281–4286.CrossRefGoogle Scholar
  31. [31]
    WANG F, ZHAO J, ZHU M, YU J, HU Y S, LIU H. Selective adsorption-deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: A reduction-deposition coupled mechanism [J]. J Mater Chem A, 2015, 3(4): 1666–1674.CrossRefGoogle Scholar
  32. [32]
    WANG S. Synthesis of Polymeric Ester Thiourea Resin and Its Adsorption and Separation Properties for Noble Metal Ions [D]. Changsha, China: Central South University, 2008. (in Chinese)Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials and Metallurgical EngineeringGuizhou Institute of TechnologyGuiyangChina
  2. 2.Institute of Process EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations