Advertisement

Journal of Central South University

, Volume 25, Issue 6, pp 1513–1523 | Cite as

Radiation pattern analyses of circular aperture antenna to generate radio orbital angular momentum

  • Cheng-long Lin (林成龙)
  • Ming-tuan Lin (林铭团)
  • Pei-guo Liu (刘培国)
  • Xing Tang (唐星)
Article

Abstract

Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. Theoretical derivation of radiation pattern of circular aperture OAM antenna is conducted to evaluate the performance. Extensive simulations verify the validity of the theoretical result. Furthermore, performance of such antenna excited by orthogonal TE and TM modes is compared, which shows the potential application for TEg1 mode to create pure OAM g–1 mode in a practical system, providing guidance for generation of twisted radio waves in mm-wave bands.

Key words

orbital angular momentum (OAM) twisted radio wave millimeter-wave circular aperture antenna radiation pattern TE mode TM mode 

圆形口径天线产生轨道角动量的辐射特性分析

摘要

圆形口径天线近来被认为是在毫米波频段产生具有高功率电磁轨道角动量的自然方式之一。但 是,目前的研究并没有给出该种天线的辐射特性分析。本文从理论角度推导了产生轨道角动量的圆形 口径天线的辐射特性,并通过仿真实验验证了理论结果的准确性。正交横电模(TE)和横磁模(TM) 激励的圆形口径天线的仿真实验表明, TEg1 可以产生纯净g–1 模态的轨道角动量,更适合在实际应 用中使用。本文对该类天线的分析有助于毫米波电磁波涡旋的产生的研究和分析。

关键词

轨道角动量 电磁波涡旋 毫米波 圆形口径天线 辐射特性 横电模 横磁模 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    THIDÉ B, THEN H, SJÖHOLM J, PALMER K BERGMAN J, CAROZZI T D, ISTOMIN Y N, IBRAGIMOV N H, KHAMITOVA R. Utilization of photon orbital angular momentum in the low-frequency radio domain [J]. Physical Review Letters, 2007, 99(8): 087701.CrossRefGoogle Scholar
  2. [2]
    GAO X, HUANG S, ZHOU J, WEI Y, GAO C, ZHANG X, GU W. Generating, multiplexing/demultiplexing and receiving the orbital angular momentum of radio frequency signals using an optical true time delay unit [J]. Journal of Optics, 2013, 15(10): 5401.Google Scholar
  3. [3]
    XU C, ZHENG S, ZHANG W, CHEN Y, CHI H, JIN X, ZHANG X. Free-space radio communication employing OAM multiplexing based on rotman lens [J]. IEEE Microwave and Wireless Components Letters, 2016, 26(9): 738–740.CrossRefGoogle Scholar
  4. [4]
    LIU K, CHENG Y, LI X, WANG H, QIN Y, GAO Y. Spinning target detection using OAM-based radar [C]//International Workshop on Electromagnetics: Applications and Student Innovation Competition. IEEE, 2017: 29–30.Google Scholar
  5. [5]
    LIU K, LI X, CHENG Y, GAO Y, FAN B, JIANG Y. OAM-based multitarget detection: From theory to experiment [J]. IEEE Microwave and Wireless Components Letters, 2017, 99: 1–3.Google Scholar
  6. [6]
    MARI E, SPINELLO F, OLDONI M, RAVANELLI R A, ROMANATO F, PARISI G. Near-field experimental verification of separation of OAM channels [J]. IEEE Antennas & Wireless Propagation Letters, 2015, 14: 556–558.CrossRefGoogle Scholar
  7. [7]
    BAI Q, TENNANT A, ALLEN B. Experimental circular phased array for generating OAM radio beams [J]. Electronics Letters, 2014, 50(20): 1414–1415.CrossRefGoogle Scholar
  8. [8]
    LIN M, GAO Y, LIU P, LIU J. Theoretical analyses and design of circular array to generate orbital angular momentum [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(7): 3510–3519.MathSciNetCrossRefGoogle Scholar
  9. [9]
    LIN M, GAO Y, LIU P, GUO Z. Performance analyses of the radio orbital angular momentum steering technique based on Ka-band antenna [J]. International Journal of Antennas and Propagation, 2017, 2017(6): 1–12.Google Scholar
  10. [10]
    BARBUTO M, TROTTA F, BILOTTI F, TOSCANO A. Circular polarized patch antenna generating orbital angular momentum [J]. Progress in Electromagnetics Research, 2014, 148: 23–30.CrossRefGoogle Scholar
  11. [11]
    YU S, LI L, SHI G, ZHU C, ZHOU X, SHI Y. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain [J]. Applied Physics Letters, 2016, 108(12): 5448.CrossRefGoogle Scholar
  12. [12]
    CHEN M L N, JIANG L J, SHA W E I. Artificial perfect electric conductor-perfect magnetic conductor anisotropic metasurface for generating orbital angular momentum of microwave with nearly perfect conversion efficiency [J]. Journal of Applied Physics, 2016, 119: 064506.CrossRefGoogle Scholar
  13. [13]
    CHEN M L N, JIANG L J, SHA W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies [J]. IEEE Transactions on Antennas & Propagation, 2017, 65(1): 396–400.CrossRefGoogle Scholar
  14. [14]
    TAMBURINI F, MARI E, SPONSELLI A, ROMANATO F, BO T, BIANCHINI A, PALMIERI L, SOMEDA C G. Encoding many channels in the same frequency through radio vorticity: First experimental test [J]. New Journal of Physics, 2011, 14(3): 811–815.Google Scholar
  15. [15]
    YAN Y, XIE G, LAVERY M P, HUANG H, AHMED N, BAO C, REN Y, CAO Y, LI L, ZHAO Z. High-capacity millimeter-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876.CrossRefGoogle Scholar
  16. [16]
    ZHENG S, HUI X, JIN X, CHI H, ZHANG X. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna [J]. IEEE Transactions on Antennas & Propagation, 2015, 63(4): 1530–1536.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    ZHANG W, ZHENG S, HUI X, CHEN Y, JIN X, CHI H, ZHANG X. Four-OAM-mode antenna with traveling-wave ring-slot structure [J]. IEEE Antennas & Wireless Propagation Letters, 2017, 16: 194–197.CrossRefGoogle Scholar
  18. [18]
    HU Y, ZHENG S, ZHANG Z, CHI H, JIN X, ZHANG X. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme [J]. Iet Microwaves Antennas & Propagation, 2016, 10(10): 1043–1047.CrossRefGoogle Scholar
  19. [19]
    GUO G, HU W, DU X. Electromagnetic vortex based radar target imaging [J]. Journal of National University of Defense Technology, 2013(6): 71–76. (in Chinese)Google Scholar
  20. [20]
    LIU K, CHENG Y, YANG Z, WANG H, QIN Y, LI X. Orbital-angular-momentum-based electro-magnetic vortex imaging [J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714.CrossRefGoogle Scholar
  21. [21]
    LIU K, LIU H, QIN Y, CHENG Y, WANG S, LI X, WANG H. Generation of OAM beams using phased array in the microwave band [J]. IEEE Transactions on Antennas & Propagation, 2016, 64(9): 3850–3857.MathSciNetCrossRefGoogle Scholar
  22. [22]
    LIN M, GAO Y, LIU P, LIU J. Super-resolution orbital angular momentum based radar targets detection [J]. Electronics Letters, 2016, 52(13): 1168–1170.CrossRefGoogle Scholar
  23. [23]
    LIN M, GAO Y, LIU P, LIU J. Improved OAM-based radar targets detection using uniform concentric circular arrays [J]. International Journal of Antennas and Propagation, 2016, 2016(6): 1–8.CrossRefGoogle Scholar
  24. [24]
    CHENG L, HONG W, HAO Z C. Generation of electromagnetic waves with arbitrary orbital angular momentum modes [J]. Scientific Reports, 2014, 4: 4814.CrossRefGoogle Scholar
  25. [25]
    HUI X, ZHENG S, CHEN Y, HU Y, JIN X, HAO C, ZHANG X. Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas [J]. Scientific Reports, 2015, 5: 10148.CrossRefGoogle Scholar
  26. [26]
    SAWANT A, CHOE M S, THUMM M, CHOI E M. Orbital angular momentum (OAM) of rotating modes driven by electrons in electron cyclotron masers [J]. Scientific Reports, 2017, 7: 3372.CrossRefGoogle Scholar
  27. [27]
    COLLIN R. Foundations for microwave engineering [M]. Berlin: VEB Verlag Technik, 1973.Google Scholar
  28. [28]
    BERGLIND E, BJORK G. Humblet’s decomposition of the electromagnetic angular moment in metallic waveguides [J]. IEEE Transactions on Microwave Theory & Techniques, 2014, 62(4):779–788.CrossRefGoogle Scholar
  29. [29]
    HUANG Y, LI H, DU P, LIU S. Third-harmonic complex cavity gyrotron self-consistent nonlinear analysis [J]. IEEE Transactions on Plasma Science, 1997, 25(6): 1406–1411.CrossRefGoogle Scholar
  30. [30]
    YONG H, LI H, YANG S, LIU S. Study of a 35-GHz third-harmonic low-voltage complex cavity gyrotron [J]. Acta Electronica Sinica, 2000, 27(2): 368–373.Google Scholar
  31. [31]
    LI X, LANG J, ALFADHL Y, CHEN X. 3D PIC simulation of starting process of oscillation in a 42 GHz gyrotron [C]//Millimeter Waves and Thz Technology Workshop. IEEE, 2013: 1–2.Google Scholar
  32. [32]
    THUMM M K A. Recent developments on high-power gyrotrons—Introduction to this special issue [J]. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32(3): 241–252.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electronic ScienceNational University of Defense TechnologyChangshaChina
  2. 2.Army Agency Office of Nanjing ArmyNanjingChina

Personalised recommendations