Advertisement

Journal of Central South University

, Volume 25, Issue 6, pp 1501–1512 | Cite as

Edge and texture detection of metal image under high temperature and dynamic solidification condition

  • Zu-guo Chen (陈祖国)
  • Yong-gang Li (李勇刚)
  • Xiao-fang Chen (陈晓方)
  • Chun-hua Yang (阳春华)
  • Wei-hua Gui (桂卫华)
Article
  • 23 Downloads

Abstract

The zinc casting is a complicated process with high temperature, high dust content and dynamic solidification. To accurately detect the edge and texture of metal image under this condition, a sub-pixel detection based on gradient entropy and adaptive four-order cubic convolution interpolation (GEAF-CCI) algorithm is proposed. This method mainly involves three procedures. Firstly, the gradient image is generated from the grey images by using gradient operator. Then, a dynamic threshold based on the maximum local gradient entropy (DTMLGE) algorithm is applied to distinguishing the edge and texture pixels from gradient images. Finally, the adaptive four-order cubic convolution interpolation (AF-CCI) algorithm is proposed for interpolating calculation of the target edges and textures according to their variation differences in different directions. The experimental result shows that the proposed algorithm can remove the jag and blur of the edges and textures, improve the edge positioning precision and reduce the false or missing detection rate.

Key words

edge and texture detection GEAF-CCI algorithm DTMLGE algorithm metal image 

高温和动态凝固条件下金属图像的纹理和边缘检测

摘要

锌锭铸造是一个高温、高粉尘和动态凝固的复杂过程。为了准确地检测该条件下金属图像的边 缘和纹理特征,提出了一种基于梯度熵和自适应四阶立方卷积插值的亚像素检测算法(GEAF-CCI)。该 方法主要包含3 个过程:首先,采用梯度算子从灰度图像中生成梯度图像;然后,采用基于最大局部 梯度熵的动态阈值(DTMLGE)算法去区分梯度图像中的边缘和纹理的像素;最后,使用AF-CCI 算 法根据目标边缘和纹理在不同方向的变化差异对其进行插值计算。实验结果表明,该算法可以减少细 节模糊和边缘锯齿现象的产生,提高边缘的定位精度和降低误检率和失检率。

关键词

边缘与纹理检测 GEAF-CCI 算法 DTMLGE 算法 金属图像 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LI Yong, GUI Wei, TEO K L, ZHU Hong, CHAI Qin. Optimal control for zinc solution purification based on interacting CSTR models [J]. Journal of Process Control, 2012, 22(10): 1878–1889.CrossRefGoogle Scholar
  2. [2]
    XIE Yong, XIE Shi, CHEN Xiao-Fang, GUI Wei, YANG Chun, CACCETTA L. An integrated predictive model with an on-line updating strategy for iron precipitation in zinc hydrometallurgy [J]. Hydrometallurgy, 2015, 15(25): 62–72.CrossRefGoogle Scholar
  3. [3]
    SUN Bei, GUI Wei, WU Tie, WANG Ya, YANG Chun. An integrated prediction model of cobalt ion concentration based on oxidation-reduction potential [J]. Hydrometallurgy, 2013, 140(11): 102–110.CrossRefGoogle Scholar
  4. [4]
    SUN Bei, GUI Wei, WANG Ya, YANG Chun. Intelligent optimal setting control of a cobalt removal process [J]. Journal of Process Control, 2014, 24(5): 586–599.CrossRefGoogle Scholar
  5. [5]
    HU Ming. Study and productive practice for improving the quality of casting slab in Benxi steel [D]. Shenyang: School of Material and Metallurgy, Northeastern University, 2010. (in Chinese)Google Scholar
  6. [6]
    TAN Peng. Modeling and control of copper loss in smelting slag [J]. JOM, 2011, 63(12): 51–57.CrossRefGoogle Scholar
  7. [7]
    SHENG Fu. Device for implementing a high efficiency method of scooping-up slag from liquid iron: US, 8153050 [P]. 2012–10–04.Google Scholar
  8. [8]
    TAN R B H, KHOO H H. Zinc casting and recycling [J]. The International Journal of Life Cycle Assessment, 2005, 10(3): 211–218.CrossRefGoogle Scholar
  9. [9]
    HE Di, ZHANG Zhi, ZHAO Xiao, YI You. Automatic cinder scraping technique in aluminium ingot casting [J]. Journal of Central South University: Science and Technology, 1999, 30(5): 530–532. (in Chinese)Google Scholar
  10. [10]
    PROPERZI G. Apparatus for melting and refining impure nonferrous metals, particularly scraps of copper and/or impure copper originating from the processing of minerals: US, 8961866 [P]. 2015–12–09.Google Scholar
  11. [11]
    GAO Zan, JIANG Wei, ZHU Kong, WANG Chao. Auto-focusing algorithm based on Roberts gradient [J]. Infrared and Laser Engineering, 2006, 35(1): 117–121. (in Chinese)Google Scholar
  12. [12]
    SUN Qiu, HOU Yue, TAN Qing, LI Chun, LIU Ming. A robust edge detection method with sub-pixel accuracy [J]. Optik-International Journal for Light and Electron Optics, 2014, 125(14): 3449–3453.CrossRefGoogle Scholar
  13. [13]
    MALIK J, DAHIYA R, GIRDHAR D, SAINARAYANAN G. Finger knuckle print authentication using Canny edge detection method [J]. International Journal of Signal and Imaging Systems Engineering, 2016, 9(6): 333–341.CrossRefGoogle Scholar
  14. [14]
    SHIVAKUMARA P, SREEDHAR R P, PHAN T Q, LU S J, TAN C L. Multioriented video scene text detection through Bayesian classification and boundary growing [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(8): 1227–1235.CrossRefGoogle Scholar
  15. [15]
    LEE J S, WEN Kai, LI Bo. Renovating contaminative image archives based on patch propagation and adaptive confidence collation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(5): 1004–1011.CrossRefGoogle Scholar
  16. [16]
    DOLLÁR P, ZITNICK C L. Fast edge detection using structured forests [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1558–1570.CrossRefGoogle Scholar
  17. [17]
    APAMELIN P, GONZALEZ C I, CASTRO J R, MENDOZA O. Edge-detection method for image processing based on generalized type-2 fuzzy logic [J]. IEEE Transactions on Fuzzy Systems, 2014, 22(6): 1515–1525.CrossRefGoogle Scholar
  18. [18]
    GONG Xiao, ZHOU Ya, ZHOU Hao, ZHENG Yin. Ultrasound image edge detection based on a novel multiplicative gradient and Canny operator [J]. Ultrasonic Imaging, 2015, 37(3): 238–250.CrossRefGoogle Scholar
  19. [19]
    WU Peng, LI Wen, SONG Wen, CAO Jun. An image sub-pixel edge detection algorithm of plant roots based on non-linear fourth-order interpolation method [J]. International Journal of Hybrid Information Technology, 2014, 7(3): 275–284.CrossRefGoogle Scholar
  20. [20]
    AMSTUTZ S, FEHRENBACH J. Edge detection using topological gradients: A scale-space approach [J]. Journal of Mathematical Imaging and Vision, 2015, 52(2): 249–266.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    CHEN X, YANG L X, XU N, XIE X, SIA B, XU R. Cluster approach based multi-camera digital image correlation: Methodology and its application in large area high temperature measurement [J]. Optics and Laser Technology, 2014, 57(7): 318–326.CrossRefGoogle Scholar
  22. [22]
    TING Yan, WANG Lie, WANG Jia. Method to enhance degraded image in dust environment [J]. Journal of Software, 2014, 9(10): 2672–2677.Google Scholar
  23. [23]
    BANOUNI H, FAIZ B, IZNAIM D, AYAOU T, OUACHA E, BOUTAIB M, ABOUDAOUD I. Determination of the flight time of the acoustic waves transmitted by the cement paste in solidification by the image processing [J]. Physics Procedia, 2015, 70: 442–446.CrossRefGoogle Scholar
  24. [24]
    ZUO Yi, WU Qiang, ZHANG Jian, AN Ping. Explicit edge inconsistency evaluation model for color-guided depth map enhancement [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(2): 439–453. DOI: 10.1109/TCSVT. 2016. 2609438.Google Scholar
  25. [25]
    YOU Xin, LI Qiang, TAO Da, OU Wei, GONG Ming. Local metric learning for exemplarbased object detection [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(8): 1265–1276.CrossRefGoogle Scholar
  26. [26]
    CHEN Li, CHEN Xiang, WANG Si, YANG Wen, LU Su. Foreign fiber image segmentation based on maximum entropy and genetic algorithm [J]. Journal of Computer and Communications, 2015, 03(11): 1–7.CrossRefGoogle Scholar
  27. [27]
    SU Yong, ZHANG Qing, GAO Ze, XU Xiao. Noise-induced bias for convolution-based interpolation in digital image correlation [J]. Optics Express, 2016, 24(2): 1175–1195.CrossRefGoogle Scholar
  28. [28]
    MEIJERING E, UNSER M. A note on cubic convolution interpolation [J]. IEEE Transactions on Image Processing, 2003, 12(4): 477–479.MathSciNetCrossRefGoogle Scholar
  29. [29]
    WANG Lei, JEON G. Bayer pattern CFA demosaicking based on multi-directional weighted interpolation and guided filter [J]. IEEE Signal Processing Letters, 2015, 22(11): 2083–2087.CrossRefGoogle Scholar
  30. [30]
    WANG L J, SHU C T. An efficient fractional-pixel motion compensation based on cubic convolution interpolation [J]. Journal of Electrical and Electronic Engineering, 2014, 2(4): 52–59.Google Scholar
  31. [31]
    GONZALEZ C I, MELIN P, CASTRO J R, MENDOZA O, CASTILLO O. An improved Sobel edge detection method based on generalized type-2 fuzzy logic [J]. Soft Computing, 2016, 20(2): 773–784.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations