Journal of Central South University

, Volume 25, Issue 6, pp 1367–1385 | Cite as

Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code

  • Wei Zeng (曾卫)
  • Sheng-qi Yang (杨圣奇)Email author
  • Wen-ling Tian (田文岭)
  • Kai Wen (文凯)


Permeability is a vital property of rock mass, which is highly affected by tectonic stress and human engineering activities. A comprehensive monitoring of pore pressure and flow rate distributions inside the rock mass is very important to elucidate the permeability evolution mechanisms, which is difficult to realize in laboratory, but easy to be achieved in numerical simulations. Therefore, the particle flow code (PFC), a discrete element method, is used to simulate permeability behaviors of rock materials in this study. Owe to the limitation of the existed solid-fluid coupling algorithm in PFC, an improved flow-coupling algorithm is presented to better reflect the preferential flow in rock fractures. The comparative analysis is conducted between original and improved algorithm when simulating rock permeability evolution during triaxial compression, showing that the improved algorithm can better describe the experimental phenomenon. Furthermore, the evolution of pore pressure and flow rate distribution during the flow process are analyzed by using the improved algorithm. It is concluded that during the steady flow process in the fractured specimen, the pore pressure and flow rate both prefer transmitting through the fractures rather than rock matrix. Based on the results, fractures are divided into the following three types: I) fractures link to both the inlet and outlet, II) fractures only link to the inlet, and III) fractures only link to the outlet. The type I fracture is always the preferential propagating path for both the pore pressure and flow rate. For type II fractures, the pore pressure increases and then becomes steady. However, the flow rate increases first and begins to decrease after the flow reaches the stop end of the fracture and finally vanishes. There is no obvious pore pressure or flow rate concentration within type III fractures.

Key words

rock mechanics fluid-solid coupling particle flow code (PFC) permeability triaxial compression 



岩石渗透性的意义重大,构造应力和人类工程活动会对渗透性产生巨大影响。岩石内部孔压与 流速分布情况的全面监测对阐明渗透性的演化机制至关重要,其在试验中难以实施,但在数值模拟中 可容易实现。因此,本文采用一种离散元方法—颗粒流程序(Particle Flow Code,简称PFC)开展岩 石材料渗透性行为的模拟研究。针对PFC 中原流-固耦合算法的不足,对其进行改进,使改进后的算 法更能体现流体在岩石裂隙中的流动优势。分别采用原算法与改进算法对三轴压缩过程中的渗透性演 化进行数值模拟,对比结果表明改进算法能更好地反映试验现象。本文利用改进流-固耦合算法,进 一步分析了渗流过程中的孔压和流速分布的演化情况。结果表明,孔压和流速都优先通过裂隙传递而 非岩石基质。根据运移流体的能力将裂隙划分为三类: I)贯穿进口端和出口端的裂隙;II)仅与进 口端连接的裂隙;III)仅与出口端连接的裂隙。I)类裂隙始终是最主要的流速和孔压的传递通道。II ) 类裂隙中孔压首先增大并逐渐趋于稳定,而流速首先增大,当流体运移到裂隙终端后流速减小甚至降 低为零。在III)类裂隙中,无明显的流体运移或孔压集中。


岩石力学 流-固耦合 颗粒流程序 渗透性 三轴压缩 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    HOEK E, BROWN E T. Empirical strength criterion for rock masses [J]. Journal of the Geotechnical Engineering Division, 1980, 106(9): 1013–1035. DOI: Scholar
  2. [2]
    TOWNEND J, ZOBACK M D. How faulting keeps the crust strong [J]. Geology, 2000, 28(5): 399–402. DOI:<399:hfktcs>;2.CrossRefGoogle Scholar
  3. [3]
    KNIPE R J. Faulting processes and fault seal [J]. Structural & Tectonic Modelling & Its Application to Petroleum Geology, 1992: 325–342. DOI: CrossRefGoogle Scholar
  4. [4]
    SHIPTON Z K, EVANS J P, ROBESON K R, FORSTER C B, SNELGROVE S H. Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults [J]. AAPG Bulletin, 2002, 86(5): 863–883. DOI: Google Scholar
  5. [5]
    BRACE W F. Permeability of crystalline and argillaceous rocks [J]. International Journal of Rock Mechanics and Mining Sciences &amp; Geomechanics Abstracts, 1980, 17(5): 241–251. DOI: CrossRefGoogle Scholar
  6. [6]
    ANTONELLINI M A, AYDIN A. Effect of faulting on fluid flow in porous sandstones: Petrophysical properties [J]. AAPG Bulletin, 1994, 78(3): 355–377. DOI: Google Scholar
  7. [7]
    BARTON C A, ZOBACK M D, MOOS D. Fluid flow along potentially active faults in crystalline rock [J]. Geology, 1995, 23(8): 683. DOI:<0683:FFAPAF>;2.CrossRefGoogle Scholar
  8. [8]
    HEAP M J, KENNEDY B M. Exploring the scale-dependent permeability of fractured andesite [J]. Earth & Planetary Science Letters, 2016, 447: 139–150. DOI: CrossRefGoogle Scholar
  9. [9]
    RAWLING G C, GOODWIN L B, WILSON J L. Internal architecture, permeability structure, and hydrologic significance of contrasting fault-zone types [J]. Geology, 2001, 29(1): 43–46. DOI:<0043:IAPSAH>;2.CrossRefGoogle Scholar
  10. [10]
    SAUL CAINE J, EVANS J P, FORSTER C B. Fault zone architecture and permeability structure [J]. Geology, 1996, 24(11): 1025–1028. DOI:<1025:FZAAPS>;2.CrossRefGoogle Scholar
  11. [11]
    JIA C J, XU W Y, WANG H L, WANG R B, JUN Y U, YAN L. Stress dependent permeability and porosity of low-permeability rock [J]. Journal of Central South University, 2017, 24(10): 2396–2405. DOI: CrossRefGoogle Scholar
  12. [12]
    BRACE W F. A note on permeability changes in geologicmaterial due to stress [J]. Pure and Applied Geophysics, 1978, 116(4): 627–633. DOI: CrossRefGoogle Scholar
  13. [13]
    MORROW C A, LOCKNER D A. Permeability and porosity of the Illinois UPH 3 drillhole granite and a comparison with other deep drillhole rocks [J]. Journal of Geophysical Research Atmospheres, 1997, 102(B2): 3067–3075. DOI: CrossRefGoogle Scholar
  14. [14]
    ZHU W, WONG T F. The transition from brittle faulting to cataclastic flow: Permeability evolution [J]. Journal of Geophysical Research Solid Earth, 1997, 102(B2): 3027–3042. DOI: CrossRefGoogle Scholar
  15. [15]
    SURI P, AZEEMUDDIN M, ZAMAN M, KUKRETI A R, ROEGIERS J C. Stress-dependent permeability measurement using the oscillating pulse technique [J]. Journal of Petroleum Science & Engineering, 1997, 17(3, 4): 247–264. DOI: CrossRefGoogle Scholar
  16. [16]
    DAVID C, MENENDEZ B, ZHU W, DAVID C, MENENDEZ B, ZHU W, WONG T F. Mechanical compaction, microstructures and permeability evolution in sandstones * [J]. Physics & Chemistry of the Earth Part A: Solid Earth & Geodesy, 2001, 26(1, 2): 45–51. DOI: CrossRefGoogle Scholar
  17. [17]
    LIU Z B, SHAO J F, HU D W, XIE S Y. Gas permeability evolution with deformation and cracking process in a white marble under compression [J]. Transport in Porous Media, 2016, 111(2): 1–15. DOI:10.1007/s11242-015-0603-9.MathSciNetCrossRefGoogle Scholar
  18. [18]
    ZENG K, XU J, HE P, WANG C G. Experimental study on permeability of coal sample subjected to triaxial stresses [J]. Procedia Engineering, 2011, 26(1): 1051–1057. DOI: CrossRefGoogle Scholar
  19. [19]
    XU P, YANG S Q. Permeability evolution of sandstone under short-term and long-term triaxial compression [J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 85: 152–164. DOI: 2016. 03.016.CrossRefGoogle Scholar
  20. [20]
    MITCHELL T M, FAULKNER D R. Experimental measurements of permeability evolution during triaxial compression of initially intact crystalline rocks and implications for fluid flow in fault zones [J]. Journal of Geophysical Research-Solid Earth, 2008, 113(B11): 226–227. DOI: Google Scholar
  21. [21]
    WANG H, XU W, SHAO J, SKOCZYLAS F. The gas permeability properties of low-permeability rock in the process of triaxial compression test [J]. Materials Letters, 2014, 116(2): 386–388. DOI: CrossRefGoogle Scholar
  22. [22]
    CHENG C, CHEN X, ZHANG S. Multi-peak deformation behavior of jointed rock mass under uniaxial compression: Insight from particle flow modeling [J]. Engineering Geology, 2016, 213: 25–45. DOI: CrossRefGoogle Scholar
  23. [23]
    FAN X, KULATILAKE P H S W, CHEN X. Mechanical behavior of rock-like jointed blocks with multi-nonpersistent joints under uniaxial loading: A particle mechanics approach [J]. Engineering Geology, 2015, 190: 17–32. DOI: CrossRefGoogle Scholar
  24. [24]
    YANG S Q, HUANG Y H, JING H W, LIU X R. Discrete element modeling on fracture coalescence behavior of red sandstone containing two unparallel fissures under uniaxial compression [J]. Engineering Geology, 2014, 178(6): 28–48. DOI: CrossRefGoogle Scholar
  25. [25]
    YANG X X, KULATILAKE P H S W, CHEN X, JING H W, YANG S Q. Particle flow modeling of rock blocks with nonpersistent open joints under uniaxial compression [J]. International Journal of Geomechanics, 2016, 16(6): 04016020. DOI: CrossRefGoogle Scholar
  26. [26]
    HUANG Y H, YANG S Q, ZENG W. Experimental and numerical study on loading rate effects of rock-like material specimens containing two unparallel fissures [J]. Journal of Central South University, 2016, 23(6): 1474–1485. DOI: CrossRefGoogle Scholar
  27. [27]
    YANG X X, JING H W, CHEN K F, YANG S Q. Failure behavior around a circular opening in a rock mass with non-persistent joints: A parallel-bond stress corrosion approach [J]. Journal of Central South University, 2017, 24(10): 2406–2420. DOI: CrossRefGoogle Scholar
  28. [28]
    THALLAK S, ROTHENBURG L, DUSSEAULT M. Simulation of multiple hydraulic fractures in a discrete element system [C]//Proceedings of the The 32nd US Symposium on Rock Mechanics. Norman, Oklahoma, F, 1991.Google Scholar
  29. [29]
    BRUNO M S. Micromechanics of stress-induced permeability anisotropy and damage in sedimentary rock [J]. Mechanics of Materials, 1994, 18(1): 31–48. DOI: MathSciNetCrossRefGoogle Scholar
  30. [30]
    AL-BUSAIDI A, HAZZARD J F, YOUNG R P. Distinct element modeling of hydraulically fractured Lac du Bonnet granite [J]. Journal of Geophysical Research Solid Earth, 2005, 110(B6): 351–352. DOI: Google Scholar
  31. [31]
    WANG T, ZHOU W, CHEN J, XIAO X, LI Y, ZHAO X Y. Simulation of hydraulic fracturing using particle flow method and application in a coal mine [J]. International Journal of Coal Geology, 2014, 121: 1–13. DOI: CrossRefGoogle Scholar
  32. [32]
    CUNDALL P A, STRACK O D L. A discrete numerical mode for granular assemblies [J]. Géotechnique, 1979, 29(1): 47–65. DOI: CrossRefGoogle Scholar
  33. [33]
    CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(7): 997–1010. DOI: CrossRefGoogle Scholar
  34. [34]
    CUNDALL P A. Fluid Formulation for PFC2D [M]. Minneapolis, MN, USA: Itasca Consulting Group, 2000.Google Scholar
  35. [35]
    HAZZARD J F, YOUNG R P, OATES S J. Numerical modelling of seismicity induced by fracture injections in a fractured reservoir [C]//Proceedings of the In Proceedings of the 5th North American Rock Mechanics Symposium Mining and Tunnel Innovation and Opportunity. Toronto, ON, Canada, 2002.Google Scholar
  36. [36]
    ZHAO X, PAUL YOUNG R. Numerical modeling of seismicity induced by fluid injection in naturally fractured reservoirs [J]. Geophysics, 2011, 76(6): WC169. DOI: CrossRefGoogle Scholar
  37. [37]
    ZHOU J, ZHANG L, BRAUN A, et al. Numerical modeling and investigation of fluid-driven fracture propagation in reservoirs based on a modified fluid-mechanically coupled model in two-dimensional particle flow code [J]. Energies, 2016, 9(9): 699. DOI: CrossRefGoogle Scholar
  38. [38]
    PFC 5.0 manual [M]. Minneapolis, MN, USA: Itasca Consulting Group, 2015.Google Scholar
  39. [39]
    DAVY C A, SKOCZYLAS F, BARNICHON J D, LEBON P. Permeability of macro-cracked argillite under confinement: Gas and water testing [J]. Physics & Chemistry of the Earth Parts A/b/c, 2007, 32(8–14): 667–680. DOI: CrossRefGoogle Scholar
  40. [40]
    JIANG C L, QIANG S, JIANG Z Q, ZHU S Y. Permeability catastrophe of brittle rock during complete stress-strain path [J]. Zhongnan Daxue Xuebao, 2012, 43(2): 688–693. (in Chinese)Google Scholar
  41. [41]
    MATTH I S K, BELAYNEH M. Fluid flow partitioning between fractures and a permeable rock matrix [J]. Geophysical Research Letters, 2004, 31(7): 221–237. DOI: Google Scholar
  42. [42]
    LIU H L, YANG T H, YU Q L, et al. Experimental study on fluid permeation evolution in whole failure process of tuff [J]. Dongbei Daxue Xuebao/Journal of Northeastern University, 2009, 30(7): 1030–1033. (in Chinese)Google Scholar
  43. [43]
    LION M, SKOCZYLAS F, LED SERT B. Determination of the main hydraulic and poro-elastic properties of a limestone from Bourgogne, France [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(6): 915–925. DOI: CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wei Zeng (曾卫)
    • 1
  • Sheng-qi Yang (杨圣奇)
    • 1
    Email author
  • Wen-ling Tian (田文岭)
    • 1
  • Kai Wen (文凯)
    • 2
  1. 1.State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.Laboratory of Rock Engineering and Mining MachineryKyushu UniversityFukuokaJapan

Personalised recommendations