Journal of Central South University

, Volume 18, Issue 3, pp 800–808 | Cite as

ARROW-WTCP: A fast transport protocol based on explicit congestion notification over wired/wireless networks

  • Jian-xin Wang (王建新)Email author
  • Jing Li (李婧)
  • Liang Rong (荣亮)


An explicit congestion notification (ECN)-based distributed transport protocol, ARROW-WTCP (AcceleRate tRansmission towards Optimal Window size TCP for Wireless network), was proposed. The ARROW-WTCP enables feasible deployment of ARROW-TCP from wired to wireless networks by providing a joint design of source and router algorithms. The protocol obtains the actual capacity of the wireless channel by calculating the queue variation in base station (BS) and adjusts the congestion window by using the feedback from its bottleneck link. The simulation results show that the ARROW-WTCP achieves strong stability, max-min fairness in dynamic networks, fast convergence to efficiency without introducing much excess traffic, and almost full link utilization in the steady state. It outperforms the XCP-B (eXplicit Control Protocol Blind), the wireless version of XCP, in terms of stability, fairness, convergence and utilization in wireless networks.

Key words

ARROW-WTCP transport protocol stability convergence fairness IEEE 802.11 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    CASERRI C, MEO M. A new approach to model the stationary behavior of TCP connections [C]// IEEE INFOCOM 2000. Tel Aviv, Israel, CA: IEEE Computer Society, 2000: 367–375.Google Scholar
  2. [2]
    BIANCHI G. Performance analysis of the IEEE 802.11 distributed coordination function [J]. IEEE Journal on Selected Areas in Communications, 2000, 18(3): 535–547.CrossRefGoogle Scholar
  3. [3]
    BALAKRISHNAN H, SESHAN S, AMIR E, KATZ R H. Improving TCP/IP performance over wireless networks [C]// MOBICOM’95. Berkeley, CA, USA: ACM Press, 1995: 2–11.Google Scholar
  4. [4]
    SU Yang, GROSS T. WXCP: explicit congestion control for wireless multi-hop networks [C]// Proceedings of IEEE IWQoS. Passau: Springer, 2005: 313–326.Google Scholar
  5. [5]
    ABRANTES F, RICARDO M. XCP for shared-access multi-rate media [J]. ACM SIGCOMM Computer Communication Review, 2006, 36(3): 27–38.CrossRefGoogle Scholar
  6. [6]
    XU Kai, TIAN Ye, ANSARI N. TCP-Jersey for wireless IP communications [J]. IEEE Journal on Selected Areas in Communications, 2004, 22(4): 747–756.CrossRefGoogle Scholar
  7. [7]
    BRAKMO L S, PERTERSON L L. TCP Vegas: End-to-end congestion avoidance on a global internet [J]. IEEE Journal on Selected Areas in Communication, 1995, 13(8): 1465–1480.CrossRefGoogle Scholar
  8. [8]
    KESHAV S. A control-theoretic approach to flow control [C]// Proceedings of ACM SIGCOMM. Zurich, Switzerland: ACM Press, 1991: 3–15.Google Scholar
  9. [9]
    FU C P, LIEW S C. TCP Veno: TCP enhancement for transmission over wireless access networks [J]. IEEE Journal on Selected Areas in Communication, 2003, 21(2): 216–228.CrossRefGoogle Scholar
  10. [10]
    CASETTI C, GERLA M, MASCOLO S, SANADIDI M Y, WANG Ren. TCP Westwood: Bandwidth estimation for enhanced transport over wireless links [C]// Proceedings of MOBICOM 2001. Rome, Italy: Springer, 2001: 287–297.Google Scholar
  11. [11]
    GERLA M, NG B K F, SANADIDI M Y, VALLA M, WANG Ren. TCP Westwood with adaptive bandwidth estimation to improve efficiency/friendliness tradeoffs [J]. ACM Computer Communication, 2004, 27(1): 41–58.CrossRefGoogle Scholar
  12. [12]
    WANG Ren, VALLA M, SANADIDI M Y, GERLA M. Using adaptive rate estimation to provide enhanced and robust transport over heterogeneous networks [C]// Proceedings 10th IEEE ICNP. Paris, France: IEEE Computer Society, 2002: 206–215.Google Scholar
  13. [13]
    CAPONE A, FRATTA L, MARTIGNON F. Bandwidth estimation schemes for TCP over wireless networks [J]. IEEE Transactions on Mobile Computing, 2004, 3(2): 129–143.CrossRefGoogle Scholar
  14. [14]
    GAO Wen-yu, CHEN Song-qiao, WANG Jian-xin. End-to-end delay bound of packets [J]. Journal of Central South University: Science and Technology, 2006, 37(1): 135–140 (in Chinese).Google Scholar
  15. [15]
    KATABI D, HANDLEY M, ROHRS C. Congestion control for high bandwidth-delay product networks [C]// Proceedings of ACM SIGCOMM. New York: ACM Press, 2002: 89–102.Google Scholar
  16. [16]
    ZHANG Yong-guang, AHMED M. A control theoretic analysis of XCP [C]// Proceedings of IEEE INFOCOM. Miami: IEEE Press, 2005: 2831–2835.Google Scholar
  17. [17]
    ZHANG Yong-guang, HENDERSON T R. An implementation and experimental study of the explicit control protocol (XCP) [C]// Proceedings IEEE INFOCOM. Miami: IEEE Press, 2005: 1037–1048.Google Scholar
  18. [18]
    LOW S, ANDREW L, WYDROWSKI B. Understanding XCP: equilibrium and fairness [C]// Proceedings IEEE INFOCOM. Miami: IEEE Press, 2005: 1025–1036.Google Scholar
  19. [19]
    WANG Jian-xin, MAKFILE S, LI Jing. A random adaptive method to adjust MAC parameters in IEEE802.11e WLAN [J]. Journal of Central South University of Technology: Science and Technology, 2009, 16(4): 629–634.CrossRefGoogle Scholar
  20. [20]
    WANG Jian-xin, RONG Liang, ZHANG Xi, CHEN Jian-er. ARROW-TCP: Accelerating transmission toward efficiency and fairness for high-speed networks [C]// Proceedings of IEEE GLOBECOM. Hawaii: IEEE Press, 2009: 1–6.Google Scholar
  21. [21]
    ZHANG Yue-ping, LEONARD D, LOGUINOV D. JetMax: scalable max-min congestion control for high-speed heterogeneous networks [C]// Proceedings of IEEE INFOCOM. Barcelona: IEEE Computer Networks, 2006: 1–13.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jian-xin Wang (王建新)
    • 1
    Email author
  • Jing Li (李婧)
    • 1
  • Liang Rong (荣亮)
    • 1
  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations