Journal of Central South University of Technology

, Volume 15, Issue 6, pp 779–785 | Cite as

Flame retardancy effect of surface-modified metal hydroxides on linear low density polyethylene

  • Xiang-jian Kong (孔祥建)
  • Shu-mei Liu (刘述梅)
  • Jian-qing Zhao (赵建青)Email author


Metal hydroxides (MAH) consisting of magnesium hydroxide and aluminum hydroxide with a mass ratio of 1:2 were surface-modified by γ-diethoxyphosphorous ester propyldiethoxymethylsilane, boric acid and diphenylsilanediol in xylene under dibutyl tin dilaurate catalyst at 140 °C. Phosphorus, silicon and boron elements covalently bonded to metal hydroxide particles were detected by X-ray photoelectron spectroscopy. The degradation behavior of the surface-modified MAH was characterized by thermogravimetric analysis. The results show that linear low density polyethylene (LLDPE) composite, filled with 50% (mass fraction) of MAH modified by 5.0% (mass fraction) of modifiers, passes the V-0 rating of UL-94 test and shows the limited oxygen index of 34%, and its heat release rate and average effective heat combustion in a cone calorimeter measurement decrease obviously; The mechanical properties of MAH can be improved by surface-modification. The uniform dispersion of particles and strong interfacial bonding between particles and matrix are obtained.

Key words

metal hydroxides linear low density polyethylene (LLDPE) synergistic flame retardancy effect surface-modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    HAMEED T, HUSSEIN I A. Melt miscibility and solid-state properties of metallocene LLDPE blends with HDPE: Influence of MM of LLDPE [J]. Journal of Central South University of Technology, 2007, 14(s1): 183–187.CrossRefGoogle Scholar
  2. [2]
    LIANG Rui-feng. Processing flow behavior and modeling of polyethylene melts [J]. Journal of Central South University of Technology, 2007, 14(s1): 178–182.CrossRefGoogle Scholar
  3. [3]
    KIERKEGAARD A, BJORKLUND J, FRIDEN U. Identification of the flame retardant decabromodiphenyl ethane in the environment [J]. Environment Science & Technology, 2004, 38(12): 3247–3253.CrossRefGoogle Scholar
  4. [4]
    THOMSEN C, LUNDANES E, BECHER G. Brominated flame retardants in archived serum samples from Norway: A study on temporal trends and the role of age [J]. Environment Science & Technology, 2002, 36(7): 1414–1418.CrossRefGoogle Scholar
  5. [5]
    LU Shui-yu, HAMERTON I. Recent developments in the chemistry of halogen-free flame retardant polymers [J]. Progress in Polymer Science, 2002, 27(8): 1661–1712.CrossRefGoogle Scholar
  6. [6]
    FU Mou-zheng, QU Bao-jun, Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends [J]. Polymer Degradation and Stability, 2004, 85(1): 633–639.CrossRefGoogle Scholar
  7. [7]
    XIAO Jin, WAN Ye, DENG Hua, LI Jie, LIU Ye-xiang. Effects of drying method on preparation of nanometer α-Al2O3 [J]. Journal of Central South University of Technology, 2007, 14(3): 330–335.CrossRefGoogle Scholar
  8. [8]
    LIU Guan-jun, LI Wen-fang, PENG Ji-hua, DU Jun. Micro-yield behaviors of Al2O3-SiO2(sf)/Al-Si metal matrix composites [J]. Trans of Nonferrous Metal Soc China, 2007, 17(1): 307–312.CrossRefGoogle Scholar
  9. [9]
    HIPPI U, MATTILA J, KORHONEN M, SEPPALA J. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes [J]. Polymer, 2003, 44(4): 1193–1201.CrossRefGoogle Scholar
  10. [10]
    ZHANG Ling, LI Chun-zhong, ZHOU Qiu-ling, SHAO Wei. Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: Effect of the interfacial compatibilizer and the particle size [J]. Journal of Materials Science, 2007, 42(12): 4227–4232.CrossRefGoogle Scholar
  11. [11]
    CHEN Xiao-lang, YU Jie, GUO Shao-yun. Structure and properties of polypropylene composites filled with magnesium hydroxide [J]. Journal of Applied Polymer Science, 2006, 102(5): 4943–4951.CrossRefGoogle Scholar
  12. [12]
    NACHTIGALL S M B, MIOTTO M, SCHNEIDER E E, MAULER R S, FORTE M M C. Macromolecular coupling agents for flame retardant materials [J]. European Polymer Journal, 2006, 42(5): 990–999.CrossRefGoogle Scholar
  13. [13]
    PLENTZ R S, MIOTTO M, SCHNEIDER E E, FORTE M S M C, MAULER R S, NACHTIGALL S M B. Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites [J]. Journal of Applied Polymer Science, 2006, 101(3): 1799–1805.CrossRefGoogle Scholar
  14. [14]
    LI Zhi-hua, LI Bo, ZHENG Zi-qiao. Special epoxy silicone adhesive for inertial confinement fusion experiment [J]. Journal of Central South University of Technology, 2007, 14(2): 153–156.CrossRefGoogle Scholar
  15. [15]
    LIAUW C M, LEES G C, HURST S J, ROTHON R N, ALI S. Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites [J]. Composites Part A, 1998, 29(9/10): 1313–1318.CrossRefGoogle Scholar
  16. [16]
    DU Long-chao, QU Bao-jun, XU Zhen-jin. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite [J]. Polymer Degradation and Stability, 2006, 91(5): 995–1001.CrossRefGoogle Scholar
  17. [17]
    BRAUN U, SCHARTEL B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene [J]. Macromolecular Chemistry and Physics, 2004, 205(16): 2185–2196.CrossRefGoogle Scholar
  18. [18]
    BOURBIGOT S, DUQUESNE S. Fire retardant polymers: Recent developments and opportunities [J]. Journal of Materials Chemistry, 2007, 17(22): 2283–2300.CrossRefGoogle Scholar
  19. [19]
    CARPENTIER F, BOURBIGOT S, LE B M, DELOBEL R, FOULON M. Charring of fire retarded ethylene vinyl acetate copolymer-magnesium hydroxide/zinc borate formulations [J]. Polymer Degradation and Stability, 2000, 69(1): 83–92.CrossRefGoogle Scholar
  20. [20]
    BOURBIGOT S, DUQUESENE S, SEBIH Z, SEGURA S, DELOBEL R. Synergistic aspects of the combination of magnesium hydroxide and ammonium polyphosphate in flame retardancy of ethylene-vinyl acetate copolymer [J]. Fire and Polymers IV: Materials and Concepts for Hazard Prevention ACS Symposium Series, 2006, 922: 200–212.CrossRefGoogle Scholar
  21. [21]
    OLIVER S, LUCKAS H J, SANDRA R. Method for producing phosphonate-modified silicones: US, 20070049718 [P]. 2007-03-01.Google Scholar
  22. [22]
    ZHANG Yong, ZHANG Zhi-jie, WANG Qian, XIE Ze-min. Synthesis of well-defined difunctional polydimethylsiloxane with an efficient dianionic initiator for ABA triblock copolymer [J]. Journal of Applied Polymer Science, 2007, 103(1): 153–159.CrossRefGoogle Scholar
  23. [23]
    ZUO Jian-dong, LI Rong-xun, FENG Shao-hua, LI Guang-ye, ZHAO Jian-qing. Flame retardancy and its mechanism of polymers flame retarded by DBDPE/Sb2O3 [J]. Journal of Central South University of Technology, 2008, 15(1): 64–68.CrossRefGoogle Scholar
  24. [24]
    HE Ji-hui, MA Wen-shi, TAN Shao-zao, ZHAO Jian-qing. Study on surface modification of ultrafine inorganic antibacterial particles [J]. Applied Surface Science, 2005, 241(3/4): 279–286.CrossRefGoogle Scholar
  25. [25]
    RUAN Ying, YANG Ming-shan, LIANG Tong-xiang, YAN Qin, LIU De-shan, JIN Ri-guang. Effects of the reinforcement and toughening of acrylate resin/CaCO3 nanoparticles on rigid poly(vinyl chloride) [J]. Journal of Applied Polymer Science, 2007, 103(6): 3940–3949.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH 2008

Authors and Affiliations

  • Xiang-jian Kong (孔祥建)
    • 1
  • Shu-mei Liu (刘述梅)
    • 1
    • 2
  • Jian-qing Zhao (赵建青)
    • 1
    • 2
    Email author
  1. 1.College of Materials Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.The Key Laboratory of Polymer Processing Engineering of Ministry of EducationSouth China University of TechnologyGuangzhouChina

Personalised recommendations