Advertisement

Rheological and related studies on industrially important polysaccharides and proteins

  • Katsuyoshi Nishinari
Article

Abstract

Gelation kinetics, mechanical spectra, thermal scanning rheology, and differential scanning calorimetry in aqueous solutions of gelling polymers and colloids such as starch, seaweed polysaccharides (agarose, carrageenans), microbial polysaccharides (gellan, curdlan), cellulose derivatives (methylcellulose), globular proteins, gelatin, and polyvinyl alcohol, which are used widely in foods, cosmetics, biomedical and pharmaceutical applications, are described. Some gelation processes at a constant temperature were treated by an equation of first order kinetics or by other modified equations, and the molecular mechanism of gel formation is discussed. Frequency and temperature dependences of gelling biopolymers are also described.

Key words

gelation kinetics mechanical spectra thermal scanning rheology polysaccharide protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    NISHINARI K, YANO T. Science of Food Hydrocolloids [M]. Tokyo: Asakura Shoten, 1990.Google Scholar
  2. [2]
    CLARK A H, ROSS-MURPHY S B. Adv Polym Sci, 1987, 83: 57.CrossRefGoogle Scholar
  3. [3]
    SCHURZ J. Prog Polym Sci, 1991, 16: 1.CrossRefGoogle Scholar
  4. [4]
    NIJENHUIS K T. Adv Polym Sci Vol, 1997, 130: 1.CrossRefGoogle Scholar
  5. [5]
    NISHINARI K. Colloid Polym Sci, 1997, 275(12): 1093–1107.CrossRefGoogle Scholar
  6. [6]
    NISHINARI K. Rep Prog Polym Phys Jpn, 2000, 43: 163–192.Google Scholar
  7. [7]
    NISHINARI K, HOFMANN K E, MORITAKA H, KOHYAMA K, NISHINARI N. Macromol Chem Phys, 1997, 198: 1217–1226.CrossRefGoogle Scholar
  8. [8]
    SHIRAKAWA M, YAMATOYA K, NISHINARI K. Food Hydrocoll, 1998, 12(1): 25–28.CrossRefGoogle Scholar
  9. [9]
    HIRASHIMA M, TAKAYA T, NISHINARI K. Thermochim Acta, 1997, 306(1/2): 109–114.CrossRefGoogle Scholar
  10. [10]
    ZHANG H, NISHINARI K, WILLIAMS M A K, et al. International Journal of Biological Macromolecules, 2002, 30: 7–16.CrossRefGoogle Scholar
  11. [11]
    NAGANO T, AKASAKA T, NISHINARI K. Biopolymers, 1994, 34(10): 1303–1309.CrossRefGoogle Scholar
  12. [12]
    KOHYAMA K, NISHINARI K, AGRIC J. Food Chem, 1993, 41(1): 8–14.CrossRefGoogle Scholar
  13. [13]
    NISHINARI K, WATASE M, KOHYAMA K, et al. Polymer J, 1992, 24(9): 871–877.CrossRefGoogle Scholar
  14. [14]
    HOSSAIN K S, NEMOTO N, NISHINARI K. Nihon Reoroji Gakkaishi, 1997, 25(3): 135–142.CrossRefGoogle Scholar
  15. [15]
    DJABOUROV M, LEBLOND J, PAPON P. J Phys France, 1988, 49: 319.CrossRefGoogle Scholar
  16. [16]
    MORITAKA H, NISHINARI K, TAKI M, et al. Journal of Agricultural and Food Chemistry, 1995, 43(6): 1685–1689.CrossRefGoogle Scholar
  17. [17]
    MIYOSHI E, NISHINARI K. Progr Colloid Polym Sci, 1999, 114: 68–82.CrossRefGoogle Scholar
  18. [18]
    NISHINARI K, ZHANG H. Trends in Food Science & Technology, 2004, 15: 305–312.CrossRefGoogle Scholar
  19. [19]
    NIKI R, KOHYAMA K, SANO Y, et al. Polym Gels Netw, 1994, 2(2): 105–118.CrossRefGoogle Scholar
  20. [20]
    RINAUDO M, DESBRIERES J. Hydrocolloids (Part 1): Physical chemistry and industrial application of gels, polysaccharides, and proteins[C]//NISHINARI K, Elsevier, Amsterdam, 2000: 111–123.CrossRefGoogle Scholar
  21. [21]
    YIN Y, NISHINARI K, ZHANG H. Presented at PRCR4.Google Scholar
  22. [22]
    NISHINARI K. Jap J Appl Phys, 1976, 15(7): 1263–1270.CrossRefGoogle Scholar
  23. [23]
    WINTER H H, MOURS M. Adv Polym Sci, 1997, 134: 165.CrossRefGoogle Scholar
  24. [24]
    NISHINARI K. Progr Colloid Polym Sci, 1999, 114: V–VII.Google Scholar
  25. [25]
    MIWA M, NAKAO Y, NARA K. Food hydrocolloids: stuructures, properties, and functions [C]//NISHINARI K, DOI E, eds. Plenum Press, New York: 1994: 119–124.CrossRefGoogle Scholar
  26. [26]
    HARADA T, OKUYAMA K, KONNO A, et al. Carbohydr Polym, 1994, 24: 101.CrossRefGoogle Scholar
  27. [27]
    ROSS-MURPHY S B, MORRIS V J, MORRIS E R. Faraday Symp Chem Soc, 1983, 18: 115.CrossRefGoogle Scholar
  28. [28]
    MATSUMOTO T, OKUBO T. J Rheol, 1991, 35: 135.CrossRefGoogle Scholar
  29. [29]
    KOSE A, OZAKI M, TAKANO K, KOBAYASHI Y, et al. J Colloid Interf Sci, 1973, 44: 330.CrossRefGoogle Scholar
  30. [30]
    IKEDA S, NISHINARI K. J Agric Food Chem, 2001, 49(9): 4436–4441.CrossRefGoogle Scholar
  31. [31]
    IKEDA S, NISHINARI K. Biomacromolecules, 2000, 1(4): 757–763.CrossRefGoogle Scholar
  32. [32]
    NISHINARI K. Macromol Symp, 2000, 159: 205–214.CrossRefGoogle Scholar
  33. [33]
    NISHINARI K, KOIDE S, OGINO K. J Physique (France), 1985, 46(5): 793–797.CrossRefGoogle Scholar
  34. [34]
    NISHINARI K, WATASE M, KOHYAMA K, et al. Rep Prog Polym Phys, 1992, 35: 169–172. (in Japanese)Google Scholar
  35. [35]
    NISHINARI K, MIYOSHI E, TAKAYA T. The wiley polymer networks group review I//[C]Chemical and Physical Networks, Formation and Control of Properties. NIJENHUIS K T, MIJS W J, eds. 1998: 79–90.Google Scholar
  36. [36]
    HIGGS P G, BALL R C. Macromolecules, 1989, 22: 2432.CrossRefGoogle Scholar
  37. [37]
    NITTA Y, FANG Y, TAKEMASA M, et al. Biomacromolecules, 2004, 5: 1206–1213.CrossRefGoogle Scholar
  38. [38]
    YOSHIMURA M, TAKAYA T, NISHINARI K. Food Hydrocolloids, 1999, 13(2): 101–111.CrossRefGoogle Scholar
  39. [39]
    OHASHI S, MATSUNAGA H. Jap Patent, S46–42176, 1971.Google Scholar
  40. [40]
    NITTA Y, KIM B S, NISHINARI K, et al. Biomacromolecules, 2003, 4:1654–1660.CrossRefGoogle Scholar
  41. [41]
    IKEDA S, NITTA Y, KIM B S, et al. Food Hydrocolloids, 2004, 18: 669–675.CrossRefGoogle Scholar
  42. [42]
    MO Y, KUBOTA K, NISHINARI K. Biorheology, 2000, 37(5/6): 401–408.Google Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Katsuyoshi Nishinari
    • 1
  1. 1.Graduate School of Human Life ScienceOsaka City UniversityOsakaJapan

Personalised recommendations