Advertisement

Multi-scale rheological perspective to polymer solutions and gels in EOR

  • Cao Xu-long  (曹绪龙)
  • Li Zheng-quan  (李振泉)
  • Zhang Qun-ling  (张坤玲)
  • Wang Gang  (王刚)
  • Xu Yuan-ze  (许元泽)Email author
Article

Abstract

Polymer flooding for enhanced oil recovery (EOR), especially using polyacrylamide (PAM) based systems, gradually became the largest non-Newtonian fluid process of economic significance. Yet, the mechanistic understanding lags behind. In this paper, the relations of structures — rheological properties — EOR applications were reviewed and some recent laboratory studies on associated PAM and PAM soft gels were introduced. The multi scale understanding of polymer rheology was found to be an essential factor for future developments.

Key words

rheology enhanced oil recovery polyacrylamide hydrophobic association weak gel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    YANG C Z. Increase Oil Recovery Using Chemical Flooding[M]. Beijing: Petroleum Industry Press, 1999.Google Scholar
  2. [2]
    ZHANG J C. Tertiary Oil Recovery[M]. Beijing: Petroleum Industry Press, 1995.Google Scholar
  3. [3]
    SHEN P P, YU J Y. The Basic Researches on Enhancing Petroleum Recovery[M]. Beijing: Petroleum Industry Press, 2004.Google Scholar
  4. [4]
    SUN H Q, ZHANG Y G, CAO X L. Polymer Flooding Technology[M]. Dongying: Petroleum University Press, 2002Google Scholar
  5. [5]
    XIA Hui-fen, WANG De-min, WU Jun-zheng, et al. Elasticity of HPAM solutions increases displacement efficiency under mixed wettability conditions[R]. SPE 88456, 2004: 108.Google Scholar
  6. [6]
    FERNANDO R H, GLASS J E. Extensional Viscosity Correction with Mobility Control Buffer Flow Behavior in Berea cores[R]. SPE 13584, 1985.Google Scholar
  7. [7]
    MARSHALL R J, METZER A B. Flow of viscoelastic fluids though porous media[J]. I&EC Fundamentals, 1967, 6(3): 393–400.CrossRefGoogle Scholar
  8. [8]
    MAGUEUR A, MOAN M. Effect of successive contractions and expansions on the apparent viscosity of dilute polymer solutions[J]. Chem Eng Communic, 1985, 36: 351–356.CrossRefGoogle Scholar
  9. [9]
    HAN X Q. Viscoelastic behavior of polymer molecules retained in porous media[J]. Erdoel Erdgas Kohle, 1990, 106(10): 393–398.Google Scholar
  10. [10]
    LIU Z Y, XU Y Z. Studies on rheological properties of HPAM solutions through porous media[J]. Oilfield Chemistry, 1996, 13(2): 145–148.MathSciNetGoogle Scholar
  11. [11]
    XU Y Z. Shengli Oil Field on polymer application on EOR[R]. Dongying, 2003.Google Scholar
  12. [12]
    AUBRY T, MOAN M. Rheological behavior of a hydrophobically associating water soluble polymer[J]. Journal of Rheology, 1994, 38: 1681–1692.CrossRefGoogle Scholar
  13. [13]
    MCCORMICK C L, JOHNSON C B. Structurally tailored macromolecules for mobility control in enhanced oil recovery[C]//Stahl G A, Schulz D N. Water-Soluble Polymers for Petroleum Recovery. New York: Plenum Press, 1988: 161–180.CrossRefGoogle Scholar
  14. [14]
    MCCORMICK C L, NONAKA T, JOHNSON C B. Water-soluble copolymers. 27. Synthesis and aqueous solution behaviour of associative acrylamide/n-alkylacrylamide copolymers[J]. Polymer, 1988, 29(4): 731–739.CrossRefGoogle Scholar
  15. [15]
    TAYLOR K C, NASR-EL-DIN H A. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature review[J]. J Petroleum Sci & Eng, 1998, 19: 265–280.CrossRefGoogle Scholar
  16. [16]
    HILL A, CANDAU F, SELB J. Properties of hydrophobically Associating polyacrylamides: Influence of the method of synthesis[J]. Macromolecules, 1993, 26: 4521–4532.CrossRefGoogle Scholar
  17. [17]
    VOLPERT E, SELB J, CANDAU F. Associating behaviour of polyacrylamides hydrophobically modified with dihexylacrylamide[J]. Polymer, 1998, 39(5): 1025–1033.CrossRefGoogle Scholar
  18. [18]
    BIGGS S, SELB J, CANDAU F. Effect of surfactant on the solution properties of hydrophobically modified polyacrylamide[J]. Langmuir, 1992, 8: 838–847.CrossRefGoogle Scholar
  19. [19]
    VOLPERT E, SELB J, CANDAU F, et al. Influence of the hydrophobe structure on composition, microstructure, and rheology in associating polyacrylamides prepared by micellar copolymerization[J]. Macromolecules, 1996, 29(5): 1452–1463.CrossRefGoogle Scholar
  20. [20]
    SUN H, ZHANG K L, CHEN J, et al. Effect of hydrophobic association on structure and rheological behavior of polyacrylamide aqueous solutions[J]. Acta Polymerica Sinica, 2006, 9(6): 810–814.CrossRefGoogle Scholar
  21. [21]
    VOSSOUGHI S. Profile modification using in situ gelation technology-a review[J]. Journal of Petroleum Science and Engineering, 2000, 26: 199–209.CrossRefGoogle Scholar
  22. [22]
    MORADI-ARAGHI A. A Review of thermally stable gels for fluid diversion in petroleum production[J]. Journal of Petroleum Science and Engineering, 2000, 26: 1–10.CrossRefGoogle Scholar
  23. [23]
    GRATTONI C A. Rheology and permeability of crosslinked polyacrylamide gel[J]. Journal of Colloid and Interface Science, 2001, 240: 601–607.CrossRefGoogle Scholar
  24. [24]
    BRYANT S L, BARTOSEK M, LOCKHART T P. Laboratory evaluation of phenol-formaldehyde/polymer gelants for high-temperature application[J]. Journal of Petroleum Science and Engineering, 1997, 17: 197–209.CrossRefGoogle Scholar
  25. [25]
    LUO W L, WU Z L, NIU Y B. New development in colloidal dispersion gel[J]. Oilfield Chemistry, 1999, 16(2): 188–193.Google Scholar
  26. [26]
    ZHANG Y F. Development in weak gel oil-displacing system[J]. Advances in Fine Petrochemicals, 2003, 4(6): 45–48.Google Scholar
  27. [27]
    YANG J M, CAO X L, ZHANG K L, et al. Monte Carlo simulation of the gelation process of aqueous polymer weak gel[J]. Chemical Journal of Chinese Universities, 2006, 27(3): 579–582.Google Scholar
  28. [28]
    ZHANG K L, CAO X L, XU Y Z. The rheological analysis of gelation kinetics for HPAM weak gels[J]. Acta Polymerica Sinica, 2006, 9(3): 516–522.CrossRefGoogle Scholar
  29. [29]
    WINTER H H, CHAMBON F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point[J]. Journal of Rheology, 1986, 30(2): 367–382CrossRefGoogle Scholar
  30. [30]
    CHAMBON F, PETROVIC Z, MACKNIGHT W J, et al. Rheology of model polyurethanes at the gel point[J]. Macromolecules, 1986, 19(8): 2146–2149.CrossRefGoogle Scholar
  31. [31]
    WINTER H H, MORGANELLI P, CHAMBON F. Stoichiometry effects on rheology of model polyurethanes at the gel point[J]. Macromolecules, 1988, 21: 532–535.CrossRefGoogle Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Cao Xu-long  (曹绪龙)
    • 1
  • Li Zheng-quan  (李振泉)
    • 1
  • Zhang Qun-ling  (张坤玲)
    • 2
  • Wang Gang  (王刚)
    • 2
  • Xu Yuan-ze  (许元泽)
    • 2
    Email author
  1. 1.Institute of Geology, Shengli Oil CoSinopecDongyingChina
  2. 2.Department of Macromolecular ScienceFudan UniversityShanghaiChina

Personalised recommendations