Journal of Central South University of Technology

, Volume 14, Issue 6, pp 737–741 | Cite as

Viscoelastic properties of monodisperse spherical silica suspension

  • Wu Qiu-mei  (伍秋美)
  • Ruan Jian-ming  (阮建明)Email author
  • Huang Bai-yun  (黄伯云)
  • Zhou Zhong-cheng  (周忠诚)
  • Zou Jian-peng  (邹?鹏)


The viscoelastic properties of the suspension of monodisperse spherical silica produced by hydrolysis of tetraethoxysilane in alcohol solvent with ammonia as a catalyst in polyethylene glycol (PEG) were studied. The results show that the SiO2/PEG suspension possesses the reversible shear thinning and shear thickening behaviors. In the shear thinning region, the loss modulus (G″) almost remains unchanged, whereas the storage modulus (G′) decreases. In the shear thickening region, G″ and G′ increase for the formation of the “clusters”. The larger G″ over G′ in all the stress studied shows that the system mainly possesses the viscous property, and that the energy dissipated(Ed) is larger than that stored. Ed of this suspension is proportional to the maximum strain (γmax) rising with the exponent of 1.92 under low shear stress; however, in the shear thickening region, Ed is proportional to γmax rising with the exponent of 5.00.

Key words

viscoelasticity monodisperse silica suspension shear thickening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    MARANZANO B J, WANGNER N J. The effect of particle size on reversible shear thickening of concentrated colloidal suspensions[J]. J Chem Phys, 2001, 114(23): 10514–10527.CrossRefGoogle Scholar
  2. [2]
    RAGHAVAN S R, KHAN S A. Shear-thickening response of fumed silica suspensions under steady and oscillatory shear[J]. J Colloid Interface Sci, 1997, 185: 57–67.CrossRefGoogle Scholar
  3. [3]
    LEE J D, SO J H, YANG S M. Rheological behavior and stability of concentrated silica suspensions[J]. J Rheol, 1999, 43(5): 1117–1139.CrossRefGoogle Scholar
  4. [4]
    SUCIU C V, IWATSUBO T, DEKI S. Investigation of a colloidal damper [J]. J Colloid Interface Sci, 2003, 259: 62–80.CrossRefGoogle Scholar
  5. [5]
    LEE Y S, WETZEL E D, WAGNER N J. The ballistic impact characteristics of Kevlar woven fabrics impregnated with a colloidal shear thickening fluid[J]. Journal of Materials Science, 2003, 38: 2825–2833.CrossRefGoogle Scholar
  6. [6]
    TAN V B C, TAY T E, TEO W K. Strengthening fabric armour with silica colloidal suspensions[J]. Solids and Structures, 2005, 42: 1561–1576.CrossRefGoogle Scholar
  7. [7]
    JONATHAN B, WAGNER N J. Reversible shear thickening in monodisperse and bidisperse colloidal suspensions[J]. J Rheol, 1996, 40(5): 899–916.CrossRefGoogle Scholar
  8. [8]
    MARAZANO B J, WAGNER N J. The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal suspensions[J]. J Rheol, 2001, 45(5): 1205–1222.CrossRefGoogle Scholar
  9. [9]
    RAGHAVAN S R, KHAN S A. Shear-induced microstructural changes in flocculated suspensions of fumed silica[J]. J Rheol, 1995, 39(6): 1311–1325.CrossRefGoogle Scholar
  10. [10]
    CHANG S M, LEE M, KIM W S. Preparation of large monodispersed spherical silica particles using seed particle growth[J]. J Colloid Interface Sci, 2005, 286: 536–542.CrossRefGoogle Scholar
  11. [11]
    CHEN Sheng-li, DONG Peng, YANG Guang-hua, et al. TEM examination and mechanism of the formation of monosize colloidal silica spheres[J]. J Inorg Mater, 1998, 13(3): 368–374. (in Chinese)Google Scholar
  12. [12]
    ZHAO Li, YU Jia-guo, CHENG Bei, et al. Preparation and formation mechanism of monodispersed silicon dioxide spherical particles[J]. Acta Chim Sinica, 2003, 61(4): 562–566. (in Chinese)Google Scholar
  13. [13]
    MARANZANO B J, WAGNER N J. Flow-small angle neutron scattering measurements of colloidal suspension microstructure evolution through the shear thickening transition[J]. J Chem Phys, 2002, 117(22): 10291–10302.CrossRefGoogle Scholar
  14. [14]
    HOFFMAN R L. Explanations for the cause of shear thickening in concentrated colloidal suspensions[J]. J Rheol, 1998, 42(1): 111–123.CrossRefGoogle Scholar
  15. [15]
    LI Xiao-jun. Practical Approach to Rheology and Rheometry[M]. Beijing: Petroleum Industry Press, 1998: 113. (in Chinese)Google Scholar
  16. [16]
    BENDER J W, WAGNER N J. Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensions[J]. J Colloid Interface Sci, 1995, 172: 171–184.CrossRefGoogle Scholar
  17. [17]
    KAFFASHI B, O’BRIEN V T, MACKAY M E. Elastic-like and viscous-like components of the shear viscosity for nearly hard sphere, Brownian suspensions[J]. J Colloid Interface Sci, 1997, 187: 22–28.CrossRefGoogle Scholar
  18. [18]
    CITERNE G P, CARREAU P J, MOAN M. Rheological properties of peanut butter[J]. Rheol Acta, 2001, 40: 86–96.CrossRefGoogle Scholar
  19. [19]
    LEE Y S, WAGNER N J. Dynamic properties of shear thickening colloidal suspensions[J]. Rheol Acta, 2003, 42: 199–208.Google Scholar
  20. [20]
    YZIQUEL F, CARREAU P J, TANGUY P A. Non-linear viscoelastic behavior of fumed silica suspensions[J]. Rheol Acta, 1999, 38: 14–25.CrossRefGoogle Scholar

Copyright information

© Published by: Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Wu Qiu-mei  (伍秋美)
    • 1
  • Ruan Jian-ming  (阮建明)
    • 1
    Email author
  • Huang Bai-yun  (黄伯云)
    • 1
  • Zhou Zhong-cheng  (周忠诚)
    • 1
  • Zou Jian-peng  (邹?鹏)
    • 1
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations