Advertisement

Preparation of jarosite by Acidithiobacillus ferrooxidans oxidation

  • Liu Jian-she  (柳建设)Email author
  • Li Bang-mei  (李邦梅)
  • Zhong De-yi  (钟得意)
  • Xia Le-xian  (夏乐先)
  • Qiu Guan-zhou  (邱冠周)
Article

Abstract

The formation of jarosite in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) was researched to ascertain the conditions of producing minimum precipitation. The effects of salt concentration and pH on the characteristics of jarosite formed in K2SO4/(NH4)2SO4-FeSO4 inorganic salt solution and 9K medium were studied by using the measurements of scanning electron microscope, X-ray diffraction, Fourierism transform infrared analysis, thermogravity/differential thermogravity analysis and particle size analysis to evaluate the product. The results indicate that the formation of jarosite begins when A. ferrooxidans reaches logarithmic growth phase in 9K medium, and a higher pH value is beneficial to the formation of jarosite. The jarosite formed in 9K medium has smaller and more concentrative particle size and smoother surface than that formed in inorganic salt solution.

Key words

jarosite A. ferrooxidans inorganic salt solution 9K medium characteristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    FROST R L, RACHAEL-ANNE W. A Raman spectroscopic study of selected natural jarosites[J]. Sectrochimica Acta Part A, 2006, 63(1): 1–8.CrossRefGoogle Scholar
  2. [2]
    SMITH A M L, HUDSON-EDWARDS K A. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2 and 8: Insights from batch experiments and computational modeling[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 608–621.CrossRefGoogle Scholar
  3. [3]
    VS_EVOLOD A M, HAROLDO A P, PATRICIO R I. Potential application of acid jarosite wastes as the main component of construction materials[J]. Construction and Building Materials, 2005, 19(1): 141–146.Google Scholar
  4. [4]
    ASOKAN P, SAXENA M, SHYAM R A. Hazardous jarosite use in developing non-hazardous product for engineering application[J]. Journal of Hazardous Materials, 2006, 137(3): 1589–1599.CrossRefGoogle Scholar
  5. [5]
    TSAKIRIDISA P E, AGATZINI-LEONARDOUA S, OUSTADAKISA P, et al. Examination of the jarosite-alunite precipitate addition in the raw meal for the production of Portland cement clinker[J]. Cement and Concrete Research, 2005, 35(11): 2066–2073.CrossRefGoogle Scholar
  6. [6]
    SILVERMAN M P, LUNDGREN D G. Studies on the chemoautotrophic iron bacterium Thiobacillus ferrooxidans. I: An improved medium and a havesting procedure for securing high xellun yields[J]. J Bacterial, 1959, 77(5): 642–647.Google Scholar
  7. [7]
    WANG Hong-mei, BIGHAM J M. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J]. Materials Engineering, 2006, 26(10): 588–592.Google Scholar
  8. [8]
    SASAKI K, KONNO H. Morphology of jarosite-compounds precipitated from biologically and chemically oxidized Fe ions[J]. The Canadian Mineralogist, 2000, 38(1): 45–56.CrossRefGoogle Scholar
  9. [9]
    KUBISZ J. Studies on synthetic alkali-hydronium jarosites. I: Synthesis of jarosite and natrojarosite[J]. Mineralogia Polonicam 1970, 1(1): 47–57.Google Scholar
  10. [10]
    RIPMEESTER J A, RATCLIFFE C I, DUTRIZAC J E, et al. Hydronium in the alunite-jarosite group[J]. The Canadian Mineralogist, 1986, 24: 773–784.Google Scholar
  11. [11]
    POWERS D A, ROSSMAN G R, SCHUGAR H J, et al. Magnetic behavior and infrared spectra of jarosite, basic iron sulfate and their chromate analogs[J]. J Sol Stat Chem, 1975, 13(1/2): 1–13.CrossRefGoogle Scholar
  12. [12]
    ARKHIPENKO D K, DEVIATKINA E T, PALCHIK H A. Kristallokhimicheskiye osobennosti sinteticheskikh yarozitov [J]. Trudy Instituta Geologii I Geofiziki, 1987, 653: 31–70. (in Russian)Google Scholar
  13. [13]
    DROUET C, NAVROTSKY A. Synthesis, characterization, and thermochemistry of K-Na-H3O jarosites[J]. Geochimica et Cosmochimica Acta, 2003, 67(11): 2063–2076.CrossRefGoogle Scholar
  14. [14]
    VÍCTOR P, MERCEDES M P. Nitrogen fixation in acidophile iron-oxidizing bacteria: The nif regulon of leptospirillum ferrooxidans[J]. Research in Microbiology, 2004, 155(9): 703–709.CrossRefGoogle Scholar
  15. [15]
    YAN Xin. Preparation by solid phase reaction and characterization of iron oxide nanometer particle[J]. Journal of Yancheng Institute of Technology: Natural Science, 2002, 15(4): 24–26. (in Chinese)Google Scholar
  16. [16]
    ASOKAN P, MOHINI S. Jarosite characteristics and its utilization potentials[J]. Science of the Total Environment, 2006, 359(1/3): 232–243.Google Scholar
  17. [17]
    QIU Guan-zhou, LIU Jian-she, WANG Dian-zuo, et al. Iron behaviour in growth of thiobacillus ferrooxidans[J]. Journal of Central South University of Technology: Natural Science, 1998, 26(1): 226–228. (in Chinese)Google Scholar
  18. [18]
    YANG Yu, PENG Hong, QIU Guan-zhou, et al. Stochastic simulation of growth curves of Acidithiobacillus ferrooxidant[J]. Journal of Central South University of Technology, 2006, 13(5): 473–476.CrossRefGoogle Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Liu Jian-she  (柳建设)
    • 1
    Email author
  • Li Bang-mei  (李邦梅)
    • 1
  • Zhong De-yi  (钟得意)
    • 1
  • Xia Le-xian  (夏乐先)
    • 1
  • Qiu Guan-zhou  (邱冠周)
    • 1
  1. 1.School of Mineral Processing and BioengineeringCentral South UniversityChangshaChina

Personalised recommendations