Advertisement

Modeling effects of constituents and dispersoids on tensile ductility of aluminum alloy

  • Song Min  (宋 晞)Email author
  • Chen Kang-hua  (陈康华)
  • Qi Xiong-wei  (齐雄伟)
Article
  • 70 Downloads

Abstract

The modeling effects of constituents and dispersoids on the tensile ductility of aluminum alloy were studied. The results show that the tensile ductility decreases with the increase of the volume fraction and size of constituents. Thus, purification can improve the tensile ductility by decreasing the volume fraction of constituents (normally compositions of Fe and Si) and the first-class microcracks. The model also indicates that the tensile ductility decreases with the increase in the volume fraction of dispersoids. Decreasing the volume fraction of dispersoids along the grain boundaries by proper heat-treatment and improving the cohesion strength between dispersoids and matrix can also improve the tensile ductility by decreasing the volume fraction of the second-class microcracks.

Key words

aluminum alloy tensile ductility modeling deformation fracture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LUDTKA G M, LAUGHLIN D E. The influence of microstructure and strength on the fracture mode and toughness of 7XXX series aluminum alloys[J]. Metall Trans A, 1982, 13(2): 411–425.CrossRefGoogle Scholar
  2. [2]
    DESHPANDE N U, GOKHALE A M, DENZER D K, et al. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization[J]. Metall Trans A, 1998, 29(5): 1191–1201.CrossRefGoogle Scholar
  3. [3]
    HORNBOGEN E, GRÄF M. Fracture toughness of precipitation hardened alloys containing narrow soft zones at grain boundaries[J]. Acta Metall, 1977, 25(4): 877–881.CrossRefGoogle Scholar
  4. [4]
    JATA K V, STARKE E A. Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy[J]. Metall Trans A, 1986, 17(5): 1011–1026.CrossRefGoogle Scholar
  5. [5]
    LIU Gang, ZHANG Guo-jun, DING Xiang-dong, et al. A model for fracture toughness of high strength aluminum alloys containing second particles of various sized scales[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(3): 706–713. (in Chinese)Google Scholar
  6. [6]
    HORNBOGEN E, STARKE E A. Theory assisted design of high strength low alloy aluminum[J]. Acta Metall Mater, 1993, 41(1): 1–16.CrossRefGoogle Scholar
  7. [7]
    GOKHALE A M, DESHPANDE N U, DENZER D K, et al. Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part II. Multiple micromechanisms-based fracture toughness model[J]. Metall Trans A, 1998, 29(6): 1203–1210.CrossRefGoogle Scholar
  8. [8]
    LIU G, ZHANG G J, DING X D, et al. The influence of multiscale-sized second-phase particles on ductility of aged aluminum alloys[J]. Metall Trans A, 2004, 35(10): 1725–1734.CrossRefGoogle Scholar
  9. [9]
    ROVEN H J. A model for fracture toughness prediction in aluminum alloys exhibiting the slip band decohesion mechanism[J]. Scripta Metall Mater, 1992, 26(5): 1383–1391.CrossRefGoogle Scholar
  10. [10]
    LIU G, SUN J, NAN C W, et al. Experimental and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys[J]. Acta Mater, 2005, 53(10): 3459–3468.CrossRefGoogle Scholar
  11. [11]
    LIU G, ZHANG G J, DING X D, et al. Dependence of fracture toughness on multiscale second phase particles in high strength Al alloys[J]. Mater Sci Tech, 2003, 19(7): 887–896.CrossRefGoogle Scholar
  12. [12]
    LIU Gang, ZHANG Guo-jun, DING Xiang-dong, et al. Model for tensile ductility of high strength Al alloys containing second particles of various sized scales[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(1): 1–10. (in Chinese)Google Scholar
  13. [13]
    HUTCHINSON J W. Singular behavior at the end of a tensile crack in a hardening material[J]. J Mech Phys Solids, 1968, 16(1): 13–31.CrossRefGoogle Scholar
  14. [14]
    RICE J R, ROSENGREN G F. Plane strain deformation near a crack tip in a power-law hardening material[J]. J Mech Phys Solids, 1968, 16(1): 1–12.CrossRefGoogle Scholar
  15. [15]
    KANNINEN M F, POPELAR C H. Advanced Fracture Mechanics[M]. New York: Oxford University Press, 1985: 300.zbMATHGoogle Scholar
  16. [16]
    DOWLING N E. J-integral estimates for cracks in infinite bodies[J]. Eng Fract Mech, 1987, 26(2): 333–348.CrossRefGoogle Scholar
  17. [17]
    WALSH J A, JATA K V, STARKE E A. The influence of Mn dispersoid content and stress state on ductile fracture of 2134 type Al alloys[J]. Acta Metall, 1989, 37(9): 2861–2871.CrossRefGoogle Scholar
  18. [18]
    DUMONT D, DESCHAMPS A, BRECHET Y. On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy[J]. Mater Sci Eng A, 2003, A356: 326–336.CrossRefGoogle Scholar

Copyright information

© Central South University Press, Sole distributor outside Mainland China: Springer 2007

Authors and Affiliations

  • Song Min  (宋 晞)
    • 1
    Email author
  • Chen Kang-hua  (陈康华)
    • 1
  • Qi Xiong-wei  (齐雄伟)
    • 1
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations