Advertisement

Characteristics of LiCoO2, LiMn2O4 and LiNi0.45Co0.1Mn0.45O2 as cathodes of lithium ion batteries

  • Guo Hua-jun Email author
  • Li Xin-hai 
  • Zhang Xin-ming 
  • Zeng Su-ming 
  • Wang Zhi-xing 
  • Peng Wen-jie 
Materials Science and Engineering

Abstract

LiNi0.45Co0.10Mn0.45O2 was synthesized from Li2CO3 and a triple oxide of nickel, cobalt and manganese at 950 °C in air. The structures and characteristics of LiNi0.45Co0.10Mn0.45O2, LiCoO2 and LiMn2O4 were investigated by XRD, SEM and electrochemical measurements. The results show that LiNi0.45Co0.10Mn0.45O2 has a layered structure with hexagonal lattice. The commercial LiCoO2 has sphere-like appearance and smooth surfaces, while the LiMn2O4 and LiNi0.45Co0.10Mn0.45O2 consist of cornered and uneven particles. LiNi0.45Co0.10Mn0.45O2 has a large discharge capacity of 140.9 mA · h/g in practical lithium ion battery, which is 33.4% and 2.8% above that of LiMn2O4 and LiCoO2, respectively. LiCoO2 and LiMn2O4 have higher discharge voltage and better rate-capability than LiNi0.45Co0.10Mn0.45O2. All the three cathodes have excellent cycling performance with capacity retention of above 89.3% at the 250th cycle. Batteries with LiMn2O4 or LiNi0.45Co0.10Mn0.45O2 cathodes show better safety performance under abusive conditions than those with LiCoO2 cathodes.

Key words

lithium ion batteries cathode LiCoO2 LiMn2O4 LiNi0.45Co0.10Mn0.45O2 

CLC number

TM912. 9 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jongh P E, Notten P H L. Effect of current pulse on lithium intercalation batteries[J]. Solid State Ionics, 2002, 148: 259–268.CrossRefGoogle Scholar
  2. [2]
    Bok J S, Lee J H, Lee B K. Effect of synthetic conditions on electrochemical activity of LiCoO2 prepared from recycled cobalt compounds[J]. Solid State Ionics, 2004, 169: 139–144.CrossRefGoogle Scholar
  3. [3]
    Lee C W, Sun Y K, Prakash J. A novel layered Li [Li0.12NizMg0.32−zMn0.56]O2 cathode material for lithium ion batteries[J]. Electrochimica Acta, 2004, 49: 4425–4432.CrossRefGoogle Scholar
  4. [4]
    Chang C C, Kim J Y, Kumta P N. Influence of crystallite size on the electrochemical propertyes of chemically synthesized stoichoimetric LiNiO2[J]. J Electrochem Soc, 2002, 149(9): A1114-A1120.CrossRefGoogle Scholar
  5. [5]
    Chowdari B V R, Subba R G V, Chow S Y. Cathodic behavior of (Co, Ti, Mg)-doped LiNiO2 [J]. Solid State Ionics, 2001, 140: 55–62.CrossRefGoogle Scholar
  6. [6]
    Cha J, Kim T J, Park B. The effect of a metal oxide coating on the cycling behavior at 55 °C in orthorhomibic LiMnO2 cathode materials[J]. J Electrochem Soc, 2002, 149(3): A288-A292.CrossRefGoogle Scholar
  7. [7]
    Swiercaek K, Marzec J, Marzec M, et al. Crystallorgraphic and electronic properties of Li1+δMn2−δO4 spinels prepared by HT synthesis[J]. Solid State Ionics, 2003, 157: 89–93.CrossRefGoogle Scholar
  8. [8]
    Hwang B J, Santhanam R, Huang C P, et al. LiMn2O4 core surrounded by LiCoxMn2−xO4 shell material for rechargeable lithium batteries[J]. J Electrochem Soc, 2002, 149(6): A694-A698.CrossRefGoogle Scholar
  9. [9]
    Sun Y K, Yoon C S, Lee Y S. Electrochemical properties and structural characterization of layered Li[Ni0.5Mn0.5]O2 cathode materials[J]. Electrochimica Acta, 2003, 48: 2589–2592.CrossRefGoogle Scholar
  10. [10]
    Shaju K M, Subba R G V, Chowdari B V R. Li-ion kinetics and polarization effect on the electrochemical performance of Li(Ni1/2Mn1/2)O2[J]. Electrochimica Acta, 2004, 49: 1565–1576.CrossRefGoogle Scholar
  11. [11]
    Kang S H, Amine K. Comparative of Li (Ni0.5−x-Mn0.5−x M2x) O2 cathode materials for rechargeable lithium batteries[J]. J Power Sources, 2003, 119: 150–155.CrossRefGoogle Scholar
  12. [12]
    Yoshio M, Noguchi H, Itoh J, et al. Preparation and properties of LiCoyMnxNi1−xy O2 as a cathode for lithium ion batteries[J]. J Power Sources, 2000, 90: 176–181.CrossRefGoogle Scholar
  13. [13]
    Park S H, Yoon C S, Kang S G, et al. Synthesis and structural characterization of layered Li (Ni1/3 Co1/3-Mn1/3)O2 cathode materials by ultrasonic spray pyrolysis method[J]. Solid State Ionics, 2004, 171: 167–172.CrossRefGoogle Scholar
  14. [14]
    Shaju K M, Subba R G V, Chowdari B V R. Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries[J]. Electrochimica Acta, 2002, 48: 145–151.CrossRefGoogle Scholar

Copyright information

© Central South University 2005

Authors and Affiliations

  • Guo Hua-jun 
    • 1
    Email author
  • Li Xin-hai 
    • 1
  • Zhang Xin-ming 
    • 2
  • Zeng Su-ming 
    • 2
  • Wang Zhi-xing 
    • 1
  • Peng Wen-jie 
    • 1
  1. 1.School of Metallurgical Science and EngineeringCentral South UniversityChangshaChina
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations