Low pressure synthesis of boron nitride with (C2H5)2O · BF3 and Li3N precursor

  • Wang Shao-bo 
  • Xu Xiao-wei 
  • Fan Hui-li 
  • Li Yu-ping 


Cubic boron nitride(c-BN) was synthesized through benzene thermal method at a lower temperature of 300 °C by selecting liquid (C2H5)2O · BF3 and Li3N as reactants. Hexagonal boron nitride(h-BN) and orthorhombic boron nitride(o-BN) were also obtained. The samples were characterized by X-ray powder diffractometry and Fourier transformation infrared spectroscopy. The results show that all the BF3, BCl3 and BBr3 in the same family compounds can react with Li3N to synthesize BN since the strongest bond of B-F can be broken. Compared with BBr3, liquid (C2H5)2O · BF3 is cheaper, less toxic and more convenient to operate. Li3N not only provides nitrogen source but also has catalytic effect on accelerating the formation of c-BN at low temperature and pressure.

Key words

benzene thermal method boron nitride boron trifluoride etherate lithium nitride cubic boron nitride orthorhombic boron nitride hexagonal boron nitride 

CLC number



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Olszyna A, Konwerska-Hrabowska J, Lisicki M. Molecular structure of E-BN[J]. Diamond and Related Materials, 1997, 6(5–7):617–620.CrossRefGoogle Scholar
  2. [2]
    Will G, Perkins P G. A scientific approach to hardness: the hardness of diamond and cubic boron nitride [J]. Materials Letters, 1999, 40(1):1–4.CrossRefGoogle Scholar
  3. [3]
    Will G, Perkins P G. Is there a new form of boron nitride with extreme hardness? [J]. Diamond and Related Materials, 2001, 10(11): 2010–2017.CrossRefGoogle Scholar
  4. [4]
    CHEN X, Rowe W B, CAI R. Precision grinding using c-BN wheels[J]. International Journal of Machine Tools and Manufacture, 2002, 42(5): 585–593.CrossRefGoogle Scholar
  5. [5]
    CAI R, Rowe W B. Assessment of vitrified c-BN wheels for precision grinding[J]. International Journal of Machine Tools and Manufacture, 2004, 44(12–13): 1391–1402.CrossRefGoogle Scholar
  6. [6]
    Fedotova J A, Fedotov A K, Shishonok N A, et al. Charge states and distribution of iron ions in polycrystalline cubic boron nitride [J]. Optical Materials, 2003, 23(1–2): 71–77.CrossRefGoogle Scholar
  7. [7]
    Nistor S V, Stefan M, Goovaerts E, et al. Point defects in cubic boron nitride crystals[J]. Diamond and Related Materials, 2001, 10(3–7): 1408–1411.CrossRefGoogle Scholar
  8. [8]
    WANG Guang-zhu, ZHANG Xiang-fa, ZHANG Kui. Application of c-BN and technical progress of mechanical machining[J]. Industrial Diamond, 2002, (3): 33–36. (in Chinese)Google Scholar
  9. [9]
    Solozhenko V L, Lazarenko A G, Petitet J P, et al. Bandgap energy of graphite-like hexagonal boron nitride[J]. Journal of Physics and Chemistry of Solids, 2001, 62(7): 1331–1334.CrossRefGoogle Scholar
  10. [10]
    Singhal S K, Park J K. Synthesis of cubic boron nitride from amorphous boron nitride containing oxide impurity using Mg-Al alloy catalyst solvent[J] Journal of Crystal Growth, 2004, 260(1–2): 217–222.CrossRefGoogle Scholar
  11. [11]
    CHAN C Y, ZHANG W J, Matsumoto S, et al. A nanoindentation study of thick c-BN films prepared by chemical vapor deposition [J]. Journal of Crystal Growth, 2003, 247(3–4): 438–444.CrossRefGoogle Scholar
  12. [12]
    Reisse G, Weissmantel S, Rost D. Stresses in pulsed laser deposited cubic boron nitride films[J]. Diamond and Related Materials, 2002, 11(3–6):1276–1280.CrossRefGoogle Scholar
  13. [13]
    Solozhenko V L. New concept of BN phase diagram: an applied aspect[J]. Diamond and Related Materials, 1994, 4(11):1–4.CrossRefGoogle Scholar
  14. [14]
    SHI Liang, GU Yun-le, CHEN Lu-yang, et al. Synthesis and morphology control of nanocrystalline boron nitride[J]. Journal of Solid State Chemistry, 2004, 177(3): 721–724.CrossRefGoogle Scholar
  15. [15]
    HAO X P, CUI D L, SHI G X, et al. Low temperature benzene thermal synthesis and characterization of boron nitride nanocrystals [J]. Materials Letters, 2001, 51(6): 509–513.CrossRefGoogle Scholar
  16. [16]
    YU Mei-yan, LI Kai, LAI Ze-feng, et al. Phase-selective synthesis of cubic boron nitride in hydrothermal solutions[J]. Journal of Crystal Growth, 2004, 269(2–4): 570–574.CrossRefGoogle Scholar
  17. [17]
    HAO X P, CUI D L, SHI G X, et al. Synthesis of cubic boron nitride at low-temperature and low-pressure conditions [J]. Chemistry of Materials, 2001, 13(8): 2457–2459.CrossRefGoogle Scholar
  18. [18]
    Gielisse P J, Mitra S S, Plendl J N. Lattice infrared of boron nitride and boron monophosphide[J]. Physical Review, 1967, 155(3): 1039–1046.CrossRefGoogle Scholar
  19. [19]
    Chrenko P M. Ultraviolet and infrared spectra of cubic boron nitride[J]. Solid State Communications, 1974, 14(6): 511–515.CrossRefGoogle Scholar
  20. [20]
    LIANG Ying-jiao, CHE Yin-chang. Thermodynamics Data Handbook of Inorganic Compound [M]. Shenyang: Northeast University Press, 1993. (in Chinese)Google Scholar
  21. [21]
    XU Xiao-wei, LIU Zhi-pu, LIN Qian-shao, et al. Li3N function in BN synthesis[J]. Chinese Journal of High Pressure Physics, 2001, 15(1): 75–79. (in Chinese)Google Scholar
  22. [22]
    LI Zhe-kui. Studies of the action of Li3N for synthesizing BN at low temperature[J]. Journal of Yanbian University (Natural Science), 2000, 26(2): 149–156. (in Chinese)Google Scholar

Copyright information

© Central South University 2005

Authors and Affiliations

  • Wang Shao-bo 
    • 1
  • Xu Xiao-wei 
    • 1
  • Fan Hui-li 
    • 2
  • Li Yu-ping 
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Applied ScienceUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations