Electrochemical properties of vanadium pentoxide xerogel films

  • Zhang Yong Email author
  • Hu Xin-guo 
  • Liu Yu-wen 
  • Cheng Yu-shan 


Vanadium pentoxide xerogel (VXG) films were prepared by rapid quenching, then coin type 2016 size lithium rechargeable batteries were assembled and tested with the VXG film electrodes and lithium anodes. Electrochemical impedance spectroscopy (EIS) analysis result reveals the expected response for intercalation, except that there is almost no Warburg (diffusion) component. Analyses results of cyclic voltammetry (CV), constant discharge (CD) and discharge-charge(DC) indicate that the sample achieves a high initial discharge specific capacity of approximate 400 mA · h/g and a corresponding efficiency of 97 % in the voltage diapason of 1.5–4.0 V with a draining current of 60 mA/g. Its preservation ratio of capacity still keeps as high as 85 % even after 100 cycles. The good electrochemical performance indicates that VXG film material is a promising cathode for lithium rechargeable batteries.

Key words

vanadium pentoxide xerogel films electrochemical impedance spectroscopy specific capacity lithium rechargeable batteries 

CLC number

O646.21 O612.4 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bates J B, Dudney N J, Gruzalski G R, et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries[J]. J Power Sources, 1993, 43(1–3): 103.CrossRefGoogle Scholar
  2. [2]
    Cohen Y S, Aurbach D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem Commun, 2004, 6(6): 536–542.CrossRefGoogle Scholar
  3. [3]
    Wang Y W, Xub H Y, Wang H, et al. Solvothermal synthesis and characterization of γ-LiV2O5 nanorods [J]. Solid State Ionics, 2004, 167(3–4): 419–424.CrossRefGoogle Scholar
  4. [4]
    Kima Y T, Gopukumara S, Kima K B. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells[J]. J Power Sources, 2003, 117(1–2): 110–117.CrossRefGoogle Scholar
  5. [5]
    Mossa P L, Fub R, Auc G, et al. Investigation of cycle life of Li-LixV2O5 rechargeable batteries [J]. J Power Sources, 2003, 124(1): 261–265.CrossRefGoogle Scholar
  6. [6]
    McGraw J M, Perkins J D, Zhang J-G, et al. Next generation V2O5 cathode materials for Li rechargeable batteries[J]. Solid State Ionics, 1998, 113–115: 408.Google Scholar
  7. [7]
    Chung S K, Chmilenko N A, Borovykov A Ya, et al. Rechargeable lithium cells with modified vanadium oxide cathodes[J]. J Power Sources, 1999, 84(1): 6.CrossRefGoogle Scholar
  8. [8]
    Benmoussa M, Outzourhit A, Bennouna A, et al. Electrochromism in sputtered V2O5 thin films: structural and optical studies[J]. Thin Solid Films, 2002, 405(1–2): 12.Google Scholar
  9. [9]
    Koike S, Fujieda T, Sakai T, et al. Characterization of sputtered vanadium oxide films for lithium batteries [J]. J Power Sources, 1999, 81–82: 581.CrossRefGoogle Scholar
  10. [10]
    Rajendra Kumar R T, Karunagaran B, Senthil Kumar V, et al. Structural properties of V2O5 thin films prepared by vacuum evaporation[J]. Mat Sci Semicon Proc, 2003, 6(5–6): 544.Google Scholar
  11. [11]
    Kim Y T, Gopukumar S, Kim K B, et al. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells [J]. J Power Sources, 2003, 117(1–2): 111.Google Scholar
  12. [12]
    Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Vanadium pentoxide nanofibers by electrospinning [J]. Scripta Mater, 2003, 49(6): 578.CrossRefGoogle Scholar
  13. [13]
    Park S J, Ha J S, Chang Y J, et al. Time dependent evolution of vanadium pentoxide nanowires in sols [J]. Chem Phys Lett, 2004, 390(1–3): 199.CrossRefGoogle Scholar
  14. [14]
    Zampronio E C, Greggio D N, Oliveira H P. Preparation, characterization and properties of PVC/V2O5 hybrid organic-inorganic material[J]. J Non-cryst Solids, 2003, 332(1–3): 250.Google Scholar
  15. [15]
    Vivier V, Belair S, Cachet-Vivier C, et al. A rapid evaluation of vanadium oxide and manganese oxide as battery materials with a micro-electrochemistry technique[J]. J Power Sources, 2001, 103(1): 62.CrossRefGoogle Scholar
  16. [16]
    Anaissi F J, Demets G J F, Toma H E. Electrochemical conditioning of vanadium (V) pentoxide xerogel films[J]. Electrochem Commun, 1999, 1(8): 332.CrossRefGoogle Scholar
  17. [17]
    Cohen Y S, Aurbach D. Surface films phenomena on vanadium-pentoxide cathodes for Li and Li-ion batteries: in situ AFM imaging[J]. Electrochem Commun, 2004, 6(6): 540.CrossRefGoogle Scholar
  18. [18]
    Farcy J, Messina R, Perichon J. Kinetic study of the lithium electroinsertion In V2O5 by Impedance spectroscopy[J]. J Electrochem Soc, 1990, 137(5): 1337.CrossRefGoogle Scholar
  19. [19]
    Vivier V, Farcy J, Pereira-Ramos J P. Electrochemical lithium insertion in sol-gel crystalline vanadium pentoxide thin films[J]. Electrochim Acta, 1998, 44(5): 834.CrossRefGoogle Scholar
  20. [20]
    Delmas C, Cognac-Auradou H, Cocciantelli J M, et al. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation [J]. Solid State Ionics, 1994, 69(3–4): 257.CrossRefGoogle Scholar
  21. [21]
    Cocciantelli J M, Menetrier M, Delmas C, et al. On the δ→γ irreversible transformation in Li/V2O5 secondary batteries[J]. Solid State Ionics, 1995, 78(1–2): 143.CrossRefGoogle Scholar

Copyright information

© Central South University 2005

Authors and Affiliations

  • Zhang Yong 
    • 1
    • 2
    Email author
  • Hu Xin-guo 
    • 1
  • Liu Yu-wen 
    • 2
  • Cheng Yu-shan 
    • 2
  1. 1.Department of Applied ChemistryHarbin Institute of TechnologyHarbinChina
  2. 2.Jiangmen JJJ Battery Co LtdJiangmenChina

Personalised recommendations