Advertisement

Journal of Central South University of Technology

, Volume 11, Issue 4, pp 457–460 | Cite as

Robustness analysis for a class of nonlinear descriptor systems

  • Wu Min Email author
  • Zhang Ling-bo 
  • He Yong 
Article

Abstract

The robustness analysis problem of a class of nonlinear descriptor systems is studied. Nonlinear matrix inequality which has the good computation property of convex feasibility is employed to derive some sufficient conditions to guarantee that the nonlinear descriptor systems have robust disturbance attenuation performance, which avoids the computational difficulties in conversing nonlinear matrix and Hamilton-Jacobi inequality. The computation property of convex feasibility of nonlinear matrix inequality makes it possible to apply the results of nonlinear robust control to practice.

Key words

nonlinear descriptor system robustness analysis robust disturbance attenuation nonlinear matrix inequality 

CLC number

TP 202 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Takaba K, Morihira N, Katayama. A generalized Lyapunov theorem for descriptor systems [J]. System & Control Letters, 1995, 24 (1): 49–51.MathSciNetCrossRefGoogle Scholar
  2. [2]
    Yasuda K, Noso F. Decentralized quadratic stabilization of interconnected descriptor systems [A]. Proceedings of the 35th IEEE Conference on Decision & Control[C]. Kobe, Japan, 1996. 4264–4269.Google Scholar
  3. [3]
    TANG Hou-jun, HAN Zheng-zhi, SHANG Yu-hui. New model control method for linear descriptor systems[J]. Acta Automatica Sinica, 2000, 26(6):798–802. (in Chinese)MathSciNetGoogle Scholar
  4. [4]
    TANG Hou-jun, HAN Zheng-zhi, SHANG Yu-hui, et al. A design method of model following control for nonlinear descriptor systems and proof of boundedness of internal states[J]. Acta Automatica Sinica, 2001, 27(1):1–8. (in Chinese)MathSciNetGoogle Scholar
  5. [5]
    XU Sheng-yuan, YANG Cheng-wu. On robust stability for discrete singular systems[J]. Acta Automatica Sinica, 2001, 27(1): 89–92. (in Chinese)MathSciNetGoogle Scholar
  6. [6]
    Takaba K, Katayama T. H 2 output feedback control for descriptor systems[J]. Automatica, 1998, 34(7): 841–850.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Takaba K. Robust H control of descriptor system time-varying uncertainty[J]. International Journal of Control, 1998, 71(5): 559–415.MathSciNetCrossRefGoogle Scholar
  8. [8]
    MA Shu-ping, CHEN Zhao-lin. Robust H control of singular systems with parameter uncertainty[A]. Proceedings of the 3rd Asian Control Conference [C]. Shanghai, 2000. 694–699.Google Scholar
  9. [9]
    XU Sheng-yuan, YANG Cheng-wu. Robust stabilization for state-space systems with uncertainty[J]. International Journal of Control, 2000, 72(18): 1659–1664.MathSciNetCrossRefGoogle Scholar
  10. [10]
    LIN Chong, WANG Jian-liang, YANG Guang-hong, et al. Robust stabilization via state feedback for descriptor systems with uncertainties in the derivative[J]. International Journal of Control, 2000, 73(5): 407–415.MathSciNetCrossRefGoogle Scholar
  11. [11]
    van der Schaft A J. L2-gain analysis of nonlinear systems and nonlinear state feedback H control[J]. IEEE Transactions on Automatic Control, 1992, 37(6): 770–784.MathSciNetCrossRefGoogle Scholar
  12. [12]
    WU Min, GUI Wei-hua. Advance Robust Control[M]. Changsha: Central South University of Technology, 1998. (in Chinese)Google Scholar
  13. [13]
    ZHANG Ling-bo, WU Min, GUI Wei-hua. On robust control of nonlinear systems[A]. Automation Theory, Technology and Application[C]. Beijing: Xiyuan Press, 1999. 40–45. (in Chinese)Google Scholar
  14. [14]
    Shen T, Tamura K. Robust H control of uncertain nonlinear system via state feedback[J]. IEEE Transactions on Automatic Control, 1995, 40(4): 766–768.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Nguang S K. Robust nonlinear H -output feedback control [J]. IEEE Transactions on Automatic Control, 1996, 41(7): 1003–1007.MathSciNetCrossRefGoogle Scholar
  16. [16]
    LU Guo-ping, ZHENG Yu-fan. Robust H control of a class of nonlinear systems with parameter uncertainty[J]. Acta Automatica Sinica, 1999, 25(3): 388–392. (in Chinese)MathSciNetGoogle Scholar
  17. [17]
    WANG Xiang-dong, GAO Li-qun, ZHANG Si-ying. Robust H control of a class of uncertain nonlinear systems via state feedback[J]. Acta Automatica Sinica, 1999, 25(2): 221–225. (in Chinese)MathSciNetGoogle Scholar
  18. [18]
    ZHANG Ling-bo, WU Min, GUI Wei-hua. Robustness analysis of a class of nonlinear systems with additive uncertainty[J]. Journal of Central South University of Technology, 2000, 31(3): 272–274. (in Chinese)Google Scholar
  19. [19]
    Lu W M, Doyle J C. H control nonlinear systems: a convex characterization[J]. IEEE Transactions on Automatic Control, 1995, 40(9): 1668–1675.MathSciNetCrossRefGoogle Scholar
  20. [20]
    Lu W M, Doyle J C. Robustness analysis and synthesis for nonlinear uncertain systems [J]. IEEE Transactions on Automatic Control, 1997, 42(12): 1654–1662.MathSciNetCrossRefGoogle Scholar

Copyright information

© Central South University 2004

Authors and Affiliations

  1. 1.School of Information Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations