Applied Geophysics

, Volume 15, Issue 3–4, pp 432–447 | Cite as

Forward modeling of ocean-bottom cable data and wave-mode separation in fluid–solid elastic media with irregular seabed

  • Ying-Ming QuEmail author
  • Jun-Zhi Sun
  • Zhen-Chun Li
  • Jian-Ping Huang
  • Hai-Peng Li
  • Wen-Zhi Sun


In marine seismic exploration, ocean-bottom cable techniques accurately record the multicomponent seismic wavefield; however, the seismic wave propagation in fluid–solid media cannot be simulated by a single wave equation. In addition, when the seabed interface is irregular, traditional finite-difference schemes cannot simulate the seismic wave propagation across the irregular seabed interface. Therefore, an acoustic–elastic forward modeling and vector-based P- and S-wave separation method is proposed. In this method, we divide the fluid–solid elastic media with irregular interface into orthogonal grids and map the irregular interface in the Cartesian coordinates system into a horizontal interface in the curvilinear coordinates system of the computational domain using coordinates transformation. The acoustic and elastic wave equations in the curvilinear coordinates system are applied to the fluid and solid medium, respectively. At the irregular interface, the two equations are combined into an acoustic–elastic equation in the curvilinear coordinates system. We next introduce a full staggered-grid scheme to improve the stability of the numerical simulation. Thus, separate P- and S-wave equations in the curvilinear coordinates system are derived to realize the P- and S-wave separation method.


Irregular seabed fluid-solid elastic media ocean bottom cable data P-and S-wave separation curvilinear coordinates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aki, K., and Richards, P., 2002, Quantitative seismology (second edition): University Science Books.Google Scholar
  2. Bernth, H., and Chapman, C., 2011, A comparison of the dispersion relations for anisotropic elastodynamic finitedifference grids: Geophysics, 76(3), WA43–WA50.Google Scholar
  3. Carcione, J. M., and Helle, H. B., 2004, The physics and simulation of wave propagation at the ocean bottom: Geophysics, 69(3), 825–839.Google Scholar
  4. Choi, Y., Min, D. J., and Shin, C., 2008, Two–dimensional waveform inversion of multi–component data in acoustic–elastic coupled media: Geophysical Prospecting, 56(6), 863–881.Google Scholar
  5. Dahake, G., and Gracewski, S. M., 1997, Finite difference predictions of P–SV wave propagation inside submerged solids. I. Liquid–solid interface conditions: The Journal of the Acoustical Society of America, 102(4), 2125–2137.Google Scholar
  6. Dai, Y. J., 2005, Research and application of wave field separation technology of multi–wave reflection seismic exploration data acquisition: Master Thesis, Central South University, Changsha.Google Scholar
  7. Dankbaar, J. W. M., 1985, Separation of P–and S waves: Geophysical Prospecting, 33(7), 970–986.Google Scholar
  8. Devaney, A. J., and Oristagliot, M. L., 1986, A planewave decomposition for elastic wave fields applied to the separation of P–waves and S–waves in vector seismic data: Geophysics, 51(2), 419–423.Google Scholar
  9. Du, Q. Z., Zhang, M. Q., Chen, X. R., Gong, X. F., and Guo, C. F., 2014, True–amplitude wavefield separation using staggered–grid interpolation in the wavenumber domain: Applied Geophysics, 11(4), 437–446.Google Scholar
  10. Falk, J., Tessmer, E., and Gajewski, D., 1998, Efficient finite–difference modelling of seismic waves using locally adjustable time steps: Geophysical Journal International, 46(6), 603–616.Google Scholar
  11. Fornberg, B., 1988, The pseudospectral method: accurate representation of interfaces in elastic wave calculations: Geophysics, 53(5), 625–637.Google Scholar
  12. Hestholm, S. O., and Ruud, B. O., 1994, 2D finitedifference elastic wave modelling including surface topography: Geophysical Prospecting, 42(5), 371–390.Google Scholar
  13. Huang, J. P., Qu, Y. M., Li, Q. Y., Li, Z. C., Li, G. L., Bu, C. C., and Teng, H. H., 2015, Variable–coordinate forward modeling of irregular surface based on dual–variable grid: Applied Geophysics, 12(1), 101–110.Google Scholar
  14. Jastram, C., and Behle, A., 1992, Acoustic modeling on a vertically varying grid: Geophysical Prospecting, 40(2), 157–169.Google Scholar
  15. Jastram, C., and Tessmer, E., 1994, Elastic modeling on a grid with vertically varying spacing: Geophysical Prospecting, 42(4), 357–370.Google Scholar
  16. Komatitsch, D., Barnes, C., and Tromp, J., 2000, Wave propagation near a fluid–solid interface: A spectralelement approach: Geophysics, 65(2), 623–631.Google Scholar
  17. Komatitsch, D., and Tromp, J., 2002, Spectral–element simulations of global seismic wave propagation–I. Validation: Geophys. J. Int. 149(2), 390–412.Google Scholar
  18. Lan, H. Q., and Zhang, Z. J., 2012, Research on seismic survey design for doubly complex areas, Applied Geophysics, 9(3), 301–312.Google Scholar
  19. Lebedev, V. I., 1964, Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics: USSR Computational Mathematics and Mathematical Physics, 4(3), 36–45.Google Scholar
  20. Levander, A., 1988, Fourth–order finite–difference P–SV seismograms: Geophysics, 53(11), 1425–1436.Google Scholar
  21. Li, Z. C., Zhang, H., Liu, Q. M., and Han, W. G., 2007, Numieric simulation of elastic wavefield separation by staggering grid high–order finite–difference algorithm: Oil Geophysical Prospecting, 42(5), 510–515.Google Scholar
  22. Lu, J., and Wang, Y., and Yao, C., 2012, Separating P–and S–waves in an affine coordinate system: J. Geophys. Eng., 9(1), 12–18.Google Scholar
  23. Ma, J. T., Sen, K. M., Chen, X. H., and Yao, F. C., 2011, OBC multiple attenuation technique using SRME theory: Chinese J. Geophys. (in Chinese), 54(11), 2960–2966.Google Scholar
  24. Mirko, V. D. B., 2006, PP/PS Wavefield separation by independent component analysis: Geophys. J. Int., 166(1), 339–348.Google Scholar
  25. Moczo, P., Bystricky, E., Kristek, J., Carcione, J. M., and Bouchon, M., 1997, Hybrid modeling of P–SV seismic motion at inhomogeneous viscoelastic topographic structures: Bull. seism. Soc. Am., 87(5), 1305–1323.Google Scholar
  26. Qu, Y., Huang, J., Li, Z., Li, Q., Zhao, J., and Li, X., 2015, Elastic wave modeling and pre–stack reverse time migration of irregular free–surface based on layered mapping method: Chinese J. Geophys., 58(8), 2896–2911.Google Scholar
  27. Qu, Y., Huang, J., Li, Z., and Li, J., 2017, A hybrid grid method in an auxiliary coordinate system for irregular fluid–solid interface modeling: Geophys. J. Int., 208(3), 1540–1556.Google Scholar
  28. Qu, Y., Li, Z., Huang, J., and Li, J., 2017, Elastic full waveform inversion for surface topography: Geophysics, 82(5), R269–R285.Google Scholar
  29. Qu, Y., Li, Z., and Huang, J., Li, J., 2018, Multi–scale full waveform inversion for areas with irregular surface topography in anauxiliary coordinate system: Exploration Geophysics., 49(1), 70–82.Google Scholar
  30. Soares, J. D., and Mansur, W. J., 2006, Dynamic analysis of fluid–soil–structure interaction problems by the boundary element method: Journal of Computational Physics, 219(2), 498–512.Google Scholar
  31. Sun, R., Chow, J., and Chen, K. J., 2001, Phase correction in separating P–and S–waves in elastic data: Geophysics, 66(5), 1515–1518.Google Scholar
  32. Sun, R., McMechan, G. A., and Chuang, H., 2011, Amplitude balancing in separating P–and S–waves in 2D and 3D elastic seismic data: Geophysics, 76(3), S103–S113.Google Scholar
  33. Tessmer, E., 2000, Seismic finite–difference modeling with spatially varying time steps: Geophysics, 65(4), 1290–1293.Google Scholar
  34. Tessmer, E., Kosloff, D., and Behle, A., 1992, Elastic wave propagation simulation in the presence of surface topography: Geophysical Journal International, 108(2), 621–632.Google Scholar
  35. Tessmer, E., and Kosloff, D., 1994, 3D elastic modelling with surface topography by a Chebychev spectral method: Geophysics, 59(3), 464–473.Google Scholar
  36. Virieux, J., 1984, SH–wave propagation in heterogeneous media: velocity–stress finite–difference method: Geophysics, 49(11), 1933–1957.Google Scholar
  37. Virieux, J., 1986, P–SV wave propagation in heterogeneous media: velocity–stress finite–difference method: Geophysics, 51(4), 889–901.Google Scholar
  38. Wang, Y. B., Satish, C. S., and Penny J. B., 2002, Separation of P–and SV–wavefields from multicomponent seismic data in the t–p domain: Geophys. J. Int., 151(2), 663–672.Google Scholar
  39. Yang, J. J., He B. S., and Zhang J. Z., 2014, Multicomponent seismic forward modeling of gas hydrates beneath the seafloor: Applied Geophysics, 11(4), 418–428.Google Scholar
  40. Yang, J. H., Liu, T., Tang, G. Y., and Hu, T. Y., 2009, Modeling seismic wave propagation within complex structures: Applied Geophysics, 6(1), 30–41.Google Scholar
  41. Zhang, B. Q., Zhou, H., Li, G. F., and Guo, J. Q., 2016, Geophone–seabed coupling effect and its correction: Applied Geophysics, 13(1), 145–155.Google Scholar
  42. Zhang, J., 2004, Wave propagation across fluid–solid interfaces: a grid method approach: Geophysical Journal International, 159(1), 240–252.Google Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ying-Ming Qu
    • 1
    • 2
    Email author
  • Jun-Zhi Sun
    • 1
  • Zhen-Chun Li
    • 1
  • Jian-Ping Huang
    • 1
  • Hai-Peng Li
    • 1
  • Wen-Zhi Sun
    • 1
  1. 1.Department of Geophysics, School of GeosciencesChina University of PetroleumQingdaoChina
  2. 2.SINOPEC Key Laboratory of GeophysicsNanjingChina

Personalised recommendations