Applied Geophysics

, Volume 15, Issue 3–4, pp 367–381 | Cite as

Numerical simulation of fault activity owing to hydraulic fracturing

  • Jun HuEmail author
  • Jun-Xing Cao
  • Xiao-Yan He
  • Quan-Feng Wang
  • Bin Xu


We built a three-dimensional model to simulate the disturbance of the stress field near the reverse fault in Zhaziao, Leyi Township owing to hydraulic fracturing. The pore pressure, and shear and normal stresses during fracturing are analyzed in detail. Input rock mechanics parameters are taken from laboratory test data of shale samples from the study area. The simulation results suggest that after 16 hours of fluid injection, the pore-pressure variation can activate the reverse fault, i.e., we observe reverse slip, and the shear stress and displacement on the fault plane increase with time. The biggest stress–strain change occurs after one hour of fluid injection and the yield point appears about 0.5 h after injection. To observe the stress evolution in each section, the normal displacement on the boundary is constrained and the fault plane is set as nonpermeable. Thus, the sliding is limited and the shear displacement is only in the scale of millimeters, and the calculated magnitude of the induced earthquakes is between Mw-3.5 and Mw-0.2. The simulation results suggest that fluid water injection results in inhomogeneous fracturing. The main ruptured areas are around the injection positions, whereas the extent of rupturing and cracks in other areas are relatively small. Nevertheless, nonnegligible fault activation is recorded. Sensitivity analysis of the key parameters suggests that the pore pressure is most sensitive to the maximum unbalanced force and the internal friction angle strongly affects the fault slip. Finally, the comparison between the effective normal stress and the maximum and minimum principal stresses on the fault plane explains the fault instability, i.e., the Mohr circle moves towards the left with decreasing radius reduces and intersects the critical slip envelope, and causes the fault to slip.


Hydraulic fracturing pore pressure fault activation induced earthquakes numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The comments of the chief editor of Applied Geophysics Ms. Fan and three reviewers improved the manuscript and we wish to thank them for that. Some figures were created using the Generic Mapping Tools program (


  1. Atkinson, C., Smelser, R. E., and Sanchez, J., 1982, Combined mode fracture via the cracked Brazilian disk test: International Journal of Fracture, 18(4), 279–291.Google Scholar
  2. Atkinson, G. M., Eaton, D. W., Ghofrani, H., Walker, D., Cheadle, B., Schultz, R., Shcherbakov, R., Tiampo, K., Gu, J., Harrington, R. M., Liu, Y. J., van der Baan, M., and Kao, H., 2016, Hydraulic Fracturing and Seismicity in the Western Canada Sedimentary Basin: Seismological Research Letter, 87(3), 631–647. Doi:10.1785/0220150263.CrossRefGoogle Scholar
  3. Bao, X. W., and Eaton, D. W., 2016, Fault activation by hydraulic fracturing in western Canada: Science, 354(6318), 1406–1409. Doi:10.1126/science.aag,2583.CrossRefGoogle Scholar
  4. Chen, J. G., Deng, J. G., Yuan, J. L., Yan, W., Yu, B. H., and Tan, Q., 2015, Determination of fracture toughness of modes I and II of shale formation: Chinese Journal of Rock Mechanics and Engineering, 34(6), 1101–105. Doi:10.13722/j.cnki.jrme.2014.1187.Google Scholar
  5. Clarke, H., Eisner, L., Styles, P., and Turner, P., 2014. Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe. Geophysical Research Letters, 2015, 41(23), 8308–8314. Doi:10.1002/2014GL062047.Google Scholar
  6. Crampin, S., Peacock, S., Gao, Y., and Chastin, S., 2004. The scatter of time–delays in shear–wave splitting above small earthquakes: Geophys. J. Int., 156, 39–44.CrossRefGoogle Scholar
  7. Crampin, S., and Gao, Y., 2013, The new geophysics: Terra Nova, 25(3), 173–180.CrossRefGoogle Scholar
  8. Deng, K., Liu, Y. J., and Harrington, R. M., 2016, Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence: Geophysical Research Letters, 43, 8482–8491. Doi:10.1002/2016GL070421.CrossRefGoogle Scholar
  9. Ding, S. D., and Sun, L. M., 1997, Fracture mechanics: China Machine Press, Beijing.Google Scholar
  10. Ellsworth, W. L., 2013, Injection–induced earthquakes: Science, 341(6142), 142. Doi:10.1126/science.1225942.CrossRefGoogle Scholar
  11. Friberg, P. A., Besana–Ostman, G. M., and Dricker, L., 2014, Characterization of an earthquake sequence triggered by hydraulic fracturing in Harrison County, Ohio: Seismol. Res. Lett., 85(6), 1295–1307. Doi: 10.1785/0220140127.CrossRefGoogle Scholar
  12. Galis, M., Ampuero, J. P., Mai, P. M., and Cappa, F., 2017, Induced seismicity provides insight into why earthquake ruptures stop: Science Advances, 3(12), eaap7528. Doi:10.1126/sciadv.aap7528.CrossRefGoogle Scholar
  13. Holland, A. A., 2013, Earthquakes triggered by hydraulic fracturing in south–central Oklahoma: Bulletin of the Seismological Society of America, 103(3), 1784–1792. Doi: 10.1785/0120120109.CrossRefGoogle Scholar
  14. Itasca Consulting Group Inc., 2015, FLAC3D–fast Lagrangian analysis of continua in 3 dimensions: User’s Manual, Minneapolis: Itasca.Google Scholar
  15. Irwin, G. R., 1947, Fracture dynamics: Fracturing of Metals Seminar, American Society for Metals, 147–166.Google Scholar
  16. Jaeger, J. C., and Cook, N. G. W., 2007, Fundamentals of Rock Mechanics (4th Edition): Chapman and Hall, London.Google Scholar
  17. Kanamori, H., and Anderson, D. L., 1975, Theoretical basis of some empirical relations in seismology: Bull. Seismol. Soc.Am, 65(5), 1073–1095.Google Scholar
  18. Kanamori, H., and Brodsky, E. E., 2004, The physics of earthquakes: Physics Today, 54(6), 1429–1496. Doi:10.1088/0034–4885/67/8/R03.Google Scholar
  19. Lei, X. L., Huang, D. J., Su, J. R., Jiang, G. M., Wang, X. L., Wang, H., Guo, X., and Fu, H., 2017, Fault reactivation and earthquakes with magnitudes of up to Mw4.7 induced by shale–gas hydraulic fracturing in Sichuan Basin, China: Scientific reports, 7, 7971. Doi:10.1038/ s41598–017–08557–y.CrossRefGoogle Scholar
  20. Li, K., Zhang, H., Ran, C., and Shao, M. J., 2016, Productivity Model of Shale Gas Well with Consideration of Stress Sensitivity: Taking Longmaxi Formation Shale Gas Reservoir in Southeastern Sichuan Basin as an Example: Journal of Xi’an Shiyou University (Natural Science Edition), 31(3), 57–61. Doi: 10.3969/j.issn.1673–064X.2016.03.009Google Scholar
  21. Li, Q. H., Chen, M., Jin, Y., Hou, B., and Zhang, J. Z., 2012, Rock mechanical properties and brittleness evaluation of shale gas reservoir:. Petroleum Drilling Techniques, 40(4), 18–22. Doi:10.3969/j.issn.1001–089 0.2012.04.004.Google Scholar
  22. Li, Z. L., Zhang, H. C., Ren, Q. W., and Wang, Y. H., 2005, Analysis of hydraulic fracturing and calculation of critical internal water pressure of rock fracture: Rock and Soil Mechanics, 26(8), 1216–1220.Google Scholar
  23. Liu, S. G., Ma, W. X., Luba, J., Huang, W. M., Zeng, X. L., and Zhang, C. J., 2011, Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan basin, China: Acta Petrologica Sinica, 27(8), 2239–2252. Doi: 1000–0569/2011/027(08)–2239–52.Google Scholar
  24. Lund Snee, J.–E., and Zoback, M. D., 2016, State of stress in Texas: Implications for induced seismicity: Geophysical Research Letters, 43, 10208–10214. Doi:10.1002/2016GL070974.Google Scholar
  25. McGarr, A., 1991, On a possible connection between three major earthquakes in California and oil production. BSSA, 81(3), 948–970.Google Scholar
  26. McGarr, A., 2014, Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research: Solid Earth. 119(2), 1008–1019. Doi:10.1002/2013JB010597.CrossRefGoogle Scholar
  27. Plenefisch, T., and Bonjer, K. P., 1997, The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters: Tectonophysics, 275, 71–97.CrossRefGoogle Scholar
  28. Rutqvist, J., Rinaldi, A. P., Cappa, F., and Moridis, G. J., 2013, Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shalegas reservoirs: Journal of Petroleum Science and Engineering, 107(31–44). Scholar
  29. Rutqvist, J., Rinaldi, A. P., Cappa, F., and Moridis, G. J., 2015, Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale–gas reservoirs: Journal of Petroleum Science and Engineering, 127, 377–386, Scholar
  30. Schultz, R., Stern, V., Novakovic, M., Atkinson, G., and Gu, Y. J., 2015, Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks: Geophys. Res. Lett. 42, 2750–2758. Doi:10.1002/2015GL063455.CrossRefGoogle Scholar
  31. Skoumal, R., Brudzinski, M. R., and Currie, B. S., 2015. Earthquakes induced by hydraulic fracturing in Poland Township, Ohio: Bull. Seismol. Soc. Am. 105(1), 189–197. Doi:10.1785/0120140168.CrossRefGoogle Scholar
  32. Song, C. P., Lu, Y. Y., Jia, Y. Z., and Xia, B. W., 2014, Effect of Coal–Rock interface on hydraulic fracturing propagation: Journal of Northeastern University (Natural Science), 35(9), 1340–1345.Google Scholar
  33. Wang, J. L., Liu, G. J., Wang, W. Z., Zhang, S. J., and Yuan, L. L., 2013, Characteristics of pore–fissure and permeability of shales in the LongmaxiFormation in southeastern Sichuan Basin: Journal of China Coal Society, 38(5), 772–777. Doi: 0253–9993(2013)05–0772–06.Google Scholar
  34. Wang, Q., Wang, P., Xiang, D. G., and Feng, Y. S., 2012, Anisotropic property of mechanical parameters of shales: Natural Gas Industry, 32(12), 62–65. Doi:10.3787/j.issn.1000–0976.2012.12.013.Google Scholar
  35. Wang, Y. M., Dong, D. Z., Li, J. Z., Wang, S. J., Li, X. J., Wang, L., Cheng, K. M., and Huang, J. L., 2012, Reservior characteristics of shale gas in Longmaxi Formation of the Lower Silurian, southern Sichuan: Acta Petrolei Sinica, 33(4), 551–561. Doi: 0253–2697(2012)04–0551–11.CrossRefGoogle Scholar
  36. Wei, X. C., Li, Q., Li, X. Y., and Niu, Z. Y., 2016, Modeling the hydromechanical responses of sandwich structurefaults during underground fluid injection: Environment Earth Science (2016), 75, 1155. Doi:10.1007/s12665–016–5975–9.CrossRefGoogle Scholar
  37. Wilson, M. P., Davies, R. J., Foulger, G. R., Julian, B. R., Styles, P., Gluyas, J. G., and Almond, S., 2015, Anthropogenic earthquakes in the UK: A national baseline prior to shale exploitation: Marine and Petroleum Geology, 68, 1–17. Scholar
  38. Zhang, Y. H., Clennell, M. B., Piane, C. D., Ahmed, S., and Sarout, J., 2016, Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions–2D generic models with a small isolated fault: Journal of Structure Geology, 93, 17–28. Scholar
  39. Zoback, M. L., 1992, Stress field constrains on intraplate seismicity in Eastern North America: Journal of Geophysics Research, 97(B8), 11761–11782.CrossRefGoogle Scholar

Copyright information

© Editorial Office of Applied Geophysics and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jun Hu
    • 1
    • 2
    Email author
  • Jun-Xing Cao
    • 2
  • Xiao-Yan He
    • 2
  • Quan-Feng Wang
    • 1
  • Bin Xu
    • 1
  1. 1.Chengdu University of TechnologyGeomathematics Key Laboratory of Sichuan ProvinceChengduChina
  2. 2.Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationChengduChina

Personalised recommendations