Advertisement

Chinese Geographical Science

, Volume 29, Issue 6, pp 974–984 | Cite as

A Macroinvertebrate Multimetric Index for the Bioassessment of Wetlands Adjacent to Agriculture Fields in the Sanjiang Plain, China

  • Haitao WuEmail author
  • Kangle Lu
  • Xianguo Lyu
  • Zhenshan Xue
Article
  • 1 Downloads

Abstract

Adjacent intensive agriculture disturbs the natural condition of wetlands. However, to assess the effect of this agriculture on wetlands, few studies have used indices based on aquatic invertebrates. Multi-metric indices (MMIs) have been successfully used to assess freshwater ecosystems worldwide and are an important management tool, but little is known about their applicability in the Sanjiang Plain, Northeast China. In this study, we developed a MMIs for aquatic invertebrates to assess freshwater wetlands in this region. The aquatic invertebrate assemblages were sampled in 27 wetlands in the Sanjiang Plain that included those in natural reserves and those affected by adjacent, intensive agriculture. Twenty-four candidate metrics were initially reviewed and screened before four core metrics were selected: total number of taxa, number of Hemiptera taxa, proportion of Gastropoda, and proportion of predators. Mann-Whitney U tests, Box and Whisker plots, correlation analyses, and redundant metric tests were used to assess the ability of metrics to distinguish among reference and impaired wetlands. Four ordinal rating categories for wetland were defined: poor, fair, good, and excellent. Of the impaired freshwater wetlands, 76.2% were in poor or fair categories. The MMIs was robust in discriminating reference wetlands from impaired wetlands and therefore have potential as a biomonitoring tool to assess the condition and to guide the restoration efforts of freshwater wetlands in Northeast China.

Keywords

bio-assessment Hemiptera Mollusca multi-metric indices (MIS) bioassessment of wetland the Sanjiang Plain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The staff of the Sanjiang Mire Wetland Experimental Station and Honghe National Natural Reserve provided support. We thank Dr. Darold P Batzer for a helpful review of the earlier version of this paper.

References

  1. Baptista D F, Buss D F, Egler M et al., 2007. A multimetric index based on benthic macroinvertebrates for evaluation of Atlantic Forest streams at Rio de Janeiro State, Brazil. Hydrobiologia, 575(1): 83–94. doi:  https://doi.org/10.1007/s10750-006-0286-x CrossRefGoogle Scholar
  2. Barbour M T, Stribling J B, Karr J R, 1995. The multimetric approach for establishing biocriteria and measuring biological condition. In: Davis W S, Simon T P (eds). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Boca Raton, London: Lewis Publishers, 63–76.Google Scholar
  3. Barbour M T, Gerritsen J, Griffith G E et al., 1996. A framework for biological criteria for Florida streams using benthic macroinvertebrates. Journal of the North American Benthological Society, 15(2): 185–211. doi:  https://doi.org/10.2307/1467948 CrossRefGoogle Scholar
  4. Batzer D P, Shurtleff A S, Rader R B, 2001. Sampling invertebrates in wetlands. In: Rader R B, Batzer D P, Wissinger S A (eds). Bioassessment and Management of North American Freshwater Wetlands. New York: John Wiley and Sons, 339–354.Google Scholar
  5. Bonada N, Prat N, Resh V H et al., 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annual Review of Entomology, 51(1): 495–523. doi:  https://doi.org/10.1146/annurev.ento.51.110104.151124 CrossRefGoogle Scholar
  6. Bullock A, Acreman M, 2003. The role of wetlands in the hydrological cycle. Hydrology and Earth System Sciences, 7(3): 358–389. doi:  https://doi.org/10.5194/hess-7-358-2003 CrossRefGoogle Scholar
  7. Clifford H F, 1991. Aquatic Invertebrates of Alberta. Alberta: The University of Alberta Press.Google Scholar
  8. Couceiro S R M, Hamada N, Forsberg B R et al., 2012. A macroinvertebrate multimetric index to evaluate the biological condition of streams in the Central Amazon region of Brazil. Ecological Indicators, 18: 118–125. doi:  https://doi.org/10.1016/j.ecolind.2011.11.001 CrossRefGoogle Scholar
  9. De Bikuña B G, López E, Leonardo J M et al., 2015. Development of a multimetric benthic macroinvertebrate index for assessing the ecological condition of Basque streams (North of Spain). Fundamental and Applied Limnology, 187(1): 21–32. doi:  https://doi.org/10.1127/fal/2015/0741 CrossRefGoogle Scholar
  10. Ferreira W R, Paiva L T, Callisto M, 2011. Development of a benthic multimetric index for biomonitoring of a neotropical watershed. Brazilian Journal of Biology, 71(1): 15–25. doi:  https://doi.org/10.1590/S1519-69842011000100005 5ai]Fierro P, Arismendi I, Hughes R M et al., 2018. A benthic macroinvertebrate multimetric index for Chilean Mediterranean streams. Ecological Indicators, 91: 13–23. doi:  https://doi.org/10.1016/j.ecolind.2018.03.074 CrossRefGoogle Scholar
  11. Fu Bojie, Liu Guohua, Chen Liding et al., 2001. Scheme of ecological regionalization in China. Acta Ecologica Sinica, 21(1): 1–6. (in Chinese)Google Scholar
  12. Hawkins C P, Norris R H, Gerritsen J et al., 2000. Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society, 19(3): 541–556. doi:  https://doi.org/10.2307/1468113 CrossRefGoogle Scholar
  13. Hering D, Feld C K, Moog O et al., 2006. Cook book for the development of a multimetric index for biological condition of aquatic ecosystems: experiences from the European AQEM and STAR projects and related initiatives. Hydrobiologia, 566(1): 311–324. doi:  https://doi.org/10.1007/s10750-006-0087-2 CrossRefGoogle Scholar
  14. Huang Q, Gao J F, Cai Y J et al., 2015. Development and application of benthic macroinvertebrate-based multimetric indices for the assessment of streams and rivers in the taihu basin, China. Ecological Indicators, 48: 649–659. doi:  https://doi.org/10.1016/j.ecolind.2014.09.014 CrossRefGoogle Scholar
  15. Hughes R M, 1995. Defining acceptable biological status by comparing with reference conditions. In: Davis W S, Simon T P (eds). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Boca Raton, FL: Lewis Publishers, 31–47.Google Scholar
  16. Hughes R M, Howlin S, Kaufmann P R, 2004. A biointegrity index (IBI) for coldwater streams of Western Oregon and Washington. Transactions of the American Fisheries Society, 133(6): 1497–1515. doi:  https://doi.org/10.1577/T03-146.1 CrossRefGoogle Scholar
  17. Kerans B L, Karr J R, 1994. A benthic index of biotic integrity (B-IBI) for rivers of the tennessee valley. Ecological Applications, 4(4): 768–785. doi:  https://doi.org/10.2307/1942007 CrossRefGoogle Scholar
  18. Leung A S L, Dudgeon D, 2011. Scales of spatiotemporal variability in macroinvertebrate abundance and diversity in monsoonal streams: detecting environmental change. Freshwater Biological, 56(6): 1193–1208. doi:  https://doi.org/10.1111/j.1365-2427.2010.02556.x CrossRefGoogle Scholar
  19. Ligeiro R, Hughes R M, Kaufmann P R et al., 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators, 25: 45–57. doi:  https://doi.org/10.1016/j.ecolind2012.09.004 CrossRefGoogle Scholar
  20. Liu Xingtu, Ma Xuehui, 2002. Natural Environmental Changes and Ecological Protection in the Sanjiang Plain. Beijing: Science Press. (in Chinese)Google Scholar
  21. Lu K L, Wu H T, Xue Z S et al., 2019. Development of a multi-metric index based on aquatic invertebrates to assess floodplain wetland condition. Hydrobiologia, 827(1): 141–153. doi:  https://doi.org/10.1007/s10750-018-3761-2 CrossRefGoogle Scholar
  22. Mereta S T, Boets P, De Meester L et al., 2013. Development of a multimetric index based on benthic macroinvertebrates for the assessment of natural wetlands in Southwest Ethiopia. Ecological Indicators, 29: 510–521. doi:  https://doi.org/10.1016/j.ecolind.2013.01.026 CrossRefGoogle Scholar
  23. Milošević D, Čerba D, Szekeres J et al., 2016. Artificial neural networks as an indicator search engine: the visualization of natural and man-caused taxa variability. Ecological Indicators, 61: 777–789. doi:  https://doi.org/10.1016/j.ecolind.2015.10.029 CrossRefGoogle Scholar
  24. Mitsch W J, Gosselink J G, 2007. Wetlands. 4th ed. New York: John Wiley and Sons, Inc.Google Scholar
  25. Morse J C, Yang L F, Tian L X, 1994. Aquatic Insects of China Useful for Monitoring Water Quality. Nanjing: HoHai University Press.Google Scholar
  26. Ntislidou C, Lazaridou M, Tsiaoussi V et al., 2018. A new multimetric macroinvertebrate index for the ecological assessment of Mediterranean lakes. Ecological Indicators, 93: 1020–1033. doi:  https://doi.org/10.1016/j.ecolind.2018.05.071 CrossRefGoogle Scholar
  27. O’Brien A, Townsend K, Hale R et al., 2016. How is ecosystem health defined and measured? A critical review of freshwater and estuarine studies. Ecological Indicators, 69: 722–729. doi:  https://doi.org/10.1016/j.ecolind.2016.05.004 CrossRefGoogle Scholar
  28. Odountan O H, De Bisthoven L J, Abou Y et al., 2019. Biomonitoring of lakes using macroinvertebrates: recommended indices and metrics for use in West Africa and developing countries. Hydrobiologia, 826(1): 1–23. doi:  https://doi.org/10.1007/s10750-018-3745-2 CrossRefGoogle Scholar
  29. Omernik J M, 1995. Ecoregions: a spatial framework for environmental management. In: Davis W S, Simon T P (eds). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Boca Raton, FL: Lewis Publishers, 49–62.Google Scholar
  30. Riato L, Leira M, Della Bella V et al., 2018. Development of a diatom-based multimetric index for acid mine drainage impacted depressional wetlands. Science of the Total Environment, 612: 214–222. doi:  https://doi.org/10.1016/j.scitotenv.2017.08.181 CrossRefGoogle Scholar
  31. Rydin H, Jeglum J K, 2013. The Biology of Peatlands. 2nd ed. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Shi X, Liu J L, You X G et al., 2017. Evaluation of river habitat integrity based on benthic macroinvertebrate-based multimetric model. Ecological Modelling, 353: 63–76. doi:  https://doi.org/10.1016/j.ecolmodel.2016.07.001 CrossRefGoogle Scholar
  33. Šidagytė E, Višinskienė G, Arbačiauskas K, 2013. Macroinvertebrate metrics and their integration for assessing the ecological status and biocontamination of Lithuanian lakes. Limnologica, 43(4): 308–318. doi:  https://doi.org/10.1016/j.limno.2013.01.003 CrossRefGoogle Scholar
  34. Song K S, Wang Z M, Du J et al., 2014. Wetland degradation: its driving forces and environmental impacts in the Sanjiang Plain, China. Environmental Management, 54(2): 255–271. doi:  https://doi.org/10.1007/s00267-014-0278-y CrossRefGoogle Scholar
  35. Stoddard J L, Larsen D P, Hawkins C P et al., 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications, 16(4): 1267–1276. doi:  https://doi.org/10.1890/1051-0761(2006)016[1267:SEFTEC]2.0.CO;2 CrossRefGoogle Scholar
  36. Stoddard J L, Herlihy A T, Peck D V et al., 2008. A process for creating multimetric indices for large-scale aquatic surveys. Journal of the North American Benthological Society, 27(4): 878–891. doi:  https://doi.org/10.1899/08-053.1 CrossRefGoogle Scholar
  37. Vander Laan J J, 2012. Environmental Assessment of Streams: Linking Land Use, Instream Stressors, and Biological Indices to Infer Likely Causes of Ecological Impairment. Logan, Utah: Utah State University.Google Scholar
  38. Verhoeven J T A, Arheimer B, Yin C Q et al., 2006. Regional and global concerns over wetlands and water quality. Trends in Ecology & Evolution, 21(2): 96–103. doi:  https://doi.org/10.1016/j.tree.2005.11.015 CrossRefGoogle Scholar
  39. Wang Li, Song Changchun, Hu Jinming et al., 2010. Response of regeneration diversity of Carex Lasiocarpa community to different water levels in Sanjiang Plain, China. Chinese Geographical Science, 20(1): 37–42. doi:  https://doi.org/10.1007/s11769-010-0037-9 CrossRefGoogle Scholar
  40. Wang Z M, Song K S, Ma W H et al., 2011. Loss and fragmentation of marshes in the Sanjiang plain, Northeast China, 1954–2005. Wetlands, 31(5): 945–954. doi:  https://doi.org/10.1007/s13157-011-0209-0 CrossRefGoogle Scholar
  41. Weilhoefer C L, 2011. A review of indicators of estuarine tidal wetland condition. Ecological Indicators, 11(2): 514–525. doi:  https://doi.org/10.1016/j.ecolind.2010.07.007 CrossRefGoogle Scholar
  42. Whittier T R, Stoddard J L, Larsen D P et al., 2007. Selecting reference sites for stream biological assessments: best professional judgment or objective criteria. Journal of the North American Benthological Society, 26(2): 349–360. doi:  https://doi.org/10.1899/0887-3593(2007)26[349:SRSFSB]2.0.CO;2 CrossRefGoogle Scholar
  43. Williams M R, Filoso S, Longstaff B J et al., 2010. Long-term trends of water quality and biotic metrics in Chesapeake Bay: 1986–2008. Estuaries and Coasts, 33(6): 1279–1299. doi:  https://doi.org/10.1007/s12237-010-9333-y CrossRefGoogle Scholar
  44. Wu Haitao, Lu Xianguo, Jiang Ming et al., 2009. Impacts of soil fauna on litter decomposition at different succession stages of wetland in Sanjiang Plain, China. Chinese Geographical Science, 19(3): 258–264. doi:  https://doi.org/10.1007/s11769-009-0258-y CrossRefGoogle Scholar
  45. Wu H T, Lu X G, Wu D H et al., 2010. Biogenic structures of two ant species Formica sanguinea and Lasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain, China. Applied Soil Ecology, 46(3): 321–328. doi:  https://doi.org/10.1016/j.apsoil.2010.10.011 CrossRefGoogle Scholar
  46. Wu H T, Guan Q, Lu X G et al., 2017. Snail (Mollusca: Gastropoda) assemblages as indicators of ecological condition in freshwater wetlands of Northeastern China. Ecological Indicators, 75: 203–209. doi:  https://doi.org/10.1016/j.ecolind.2016.12.042 CrossRefGoogle Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Haitao Wu
    • 1
    Email author
  • Kangle Lu
    • 1
    • 2
  • Xianguo Lyu
    • 1
  • Zhenshan Xue
    • 1
  1. 1.Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations