Advertisement

Chinese Geographical Science

, Volume 29, Issue 6, pp 934–948 | Cite as

Searching for an Optimized Single-objective Function Matching Multiple Objectives with Automatic Calibration of Hydrological Models

  • Fuqiang TianEmail author
  • Hongchang Hu
  • Yu Sun
  • Hongyi Li
  • Hui Lu
Article
  • 17 Downloads

Abstract

In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively defined as single- or multi-objective functions when utilizing automatic calibration approaches. In most previous studies, there is a general opinion that no single-objective function can represent all important characteristics of even one specific hydrological variable (e.g., streamflow). Thus hydrologists must turn to multi-objective calibration. In this study, we demonstrated that an optimized single-objective function can compromise multi-response modes (i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power function of the absolute error between observed and simulated streamflow with the exponent of power function optimized for specific watersheds. The new objective function was applied to 196 model parameter estimation experiment (MOPEX) watersheds across the eastern United States using the semi-distributed Xinanjiang hydrological model. The optimized exponent value for each watershed was obtained by targeting four popular objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively. Results showed that the optimized single-objective function can achieve a better hydrograph simulation compared to the traditional single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance high flow part and low flow part of the hydrograph without substantial differences compared to multi-objective calibration. The proposed optimal single-objective function can be practically adopted in the hydrological modeling if the optimal exponent value could be determined a priori according to hydrological/climatic/landscape characteristics in a specific watershed.

Keywords

automatic calibration single-objective function multi-objective functions Xinanjiang model hydrological model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao H J, Zhao L N, He Y et al., 2011. Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Advances in Geosciences, 29: 61–67. doi:  https://doi.org/10.5194/adgeo-29-61-2011 CrossRefGoogle Scholar
  2. Bekele E G, Nicklow J W, 2007. Multi-objective automatic calibration of SWAT using NSGA-II. Journal of Hydrology, 341(3–4): 165–176. doi:  https://doi.org/10.1016/j.jhydrol.2007.05.014 CrossRefGoogle Scholar
  3. Booij M J, Krol M S, 2010. Balance between calibration objectives in a conceptual hydrological model. Hydrological Sciences Journal, 55(6): 1017–1032. doi:  https://doi.org/10.1080/02626667.2010.505892 CrossRefGoogle Scholar
  4. Box G E P, Cox D R, 1964. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26(2): 211–252.CrossRefGoogle Scholar
  5. Boyle D P, Gupta H V, Sorooshian S, 2000. Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resources Research, 36(12): 3663–3674. doi:  https://doi.org/10.1029/2000WR900207 CrossRefGoogle Scholar
  6. Cheng C T, Zhao M Y, Chau K W et al., 2006. Using genetic algorithm and TOPSIS for Xinanjiang model calibration with a single procedure. Journal of Hydrology, 316(1–4): 129–140. doi:  https://doi.org/10.1016/j.jhydrol.2005.04.022 CrossRefGoogle Scholar
  7. Deb K, Pratap A, Agarwal S et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2): 182–197. doi:  https://doi.org/10.1109/4235.996017 CrossRefGoogle Scholar
  8. Duan Q, Schaake J, Andréassian V et al., 2006. Model parameter estimation experiment (MOPEX): an overview of science strategy and major results from the second and third workshops. Journal of Hydrology, 320(1–2): 3–17. doi:  https://doi.org/10.1016/j.jhydrol.2005.07.031 CrossRefGoogle Scholar
  9. Efstratiadis A, Koutsoyiannis D, 2010. One decade of multi- objective calibration approaches in hydrological modelling: a review. Hydrological Sciences Journal, 55(1): 58–78. doi:  https://doi.org/10.1080/02626660903526292 CrossRefGoogle Scholar
  10. Faustini J M, Kaufmann P R, Herlihy A T, 2009. Downstream variation in bankfull width of wadeable streams across the conterminous United States. Geomorphology, 108(3–4): 292–311. doi:  https://doi.org/10.1016/j.geomorph.2009.02.005 CrossRefGoogle Scholar
  11. Fenicia F, Savenije H H G, Matgen P et al., 2007. A comparison of alternative multiobjective calibration strategies for hydrological modeling. Water Resources Research, 43(3): W03434. doi:  https://doi.org/10.1029/2006WR005098 CrossRefGoogle Scholar
  12. Gan T Y, Dlamini E M, Biftu G F, 1997. Effects of model complexity and structure, data quality, and objective functions on hydrologic modeling. Journal of Hydrology, 192(1–4): 81–103. doi:  https://doi.org/10.1016/S0022-1694(96)03114-9 CrossRefGoogle Scholar
  13. Gill M K, Kaheil Y H, Khalil A et al., 2006. Multiobjective particle swarm optimization for parameter estimation in hydrology. Water Resources Research, 42(7): W07417. doi:  https://doi.org/10.1029/2005WR004528 CrossRefGoogle Scholar
  14. Guinot V, Cappelaere B, Delenne C et al., 2011. Towards improved criteria for hydrological model calibration: theoretical analysis of distance- and weak form-based functions. Journal of Hydrology, 401(1–2): 1–13. doi:  https://doi.org/10.1016/j.jhydrol.2011.02.004 CrossRefGoogle Scholar
  15. Gupta H V, Sorooshian S, Yapo P O, 1998. Toward improved calibration of hydrologic models: multiple and noncommensurable measures of information. Water Resources Research, 34(4): 751–763. doi:  https://doi.org/10.1029/97WR03495 CrossRefGoogle Scholar
  16. Gupta H V, Kling H, Yilmaz K K et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377(1–2): 80–91. doi:  https://doi.org/10.1016/j.jhydrol.2009.08.003 CrossRefGoogle Scholar
  17. Hall J W, Tarantola S, Bates P D et al., 2005. Distributed sensitivity analysis of flood inundation model calibration. Journal of Hydraulic Engineering, 131(2): 117–126. doi:  https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(117) CrossRefGoogle Scholar
  18. Jain S K, Sudheer K P, 2008. Fitting of hydrologic models: a close look at the Nash-Sutcliffe index. Journal of Hydrologic Engineering, 13(10): 981–986. doi:  https://doi.org/10.1061/(ASCE)1084-0699(2008)13:10(981) CrossRefGoogle Scholar
  19. Ju Q, Yu Z B, Hao Z C et al., 2009. Division-based rainfall-runoff simulations with BP neural networks and Xinanjiang model. Neurocomputing, 72(13–15): 2873–2883. doi:  https://doi.org/10.1016/j.neucom.2008.12.032 CrossRefGoogle Scholar
  20. Khu S T, Madsen H, di Pierro F, 2008. Incorporating multiple observations for distributed hydrologic model calibration: an approach using a multi-objective evolutionary algorithm and clustering. Advances in Water Resources, 31(10): 1387–1398. doi:  https://doi.org/10.1016/j.advwatres.2008.07.011 CrossRefGoogle Scholar
  21. Kollat J B, Reed P M, 2006. Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Advances in Water Resources, 29(6): 792–807. doi:  https://doi.org/10.1016/j.advwatres.2005.07.010 CrossRefGoogle Scholar
  22. Kollat J B, Reed P M, Wagener T, 2012. When are multiobjective calibration trade-offs in hydrologic models meaningful? Water Resources Research, 48(3): 03520. doi:  https://doi.org/10.1029/2011WR011534 CrossRefGoogle Scholar
  23. Krause P, Boyle D P, Bäse F, 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5: 89–97. doi:  https://doi.org/10.5194/adgeo-5-89-2005 CrossRefGoogle Scholar
  24. Laumanns M, Thiele L, Deb K et al., 2002. Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3): 263–282. doi:  https://doi.org/10.1162/106365602760234108 CrossRefGoogle Scholar
  25. Li H X, Zhang Y Q, Chiew F H S et al., 2009. Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index. Journal of Hydrology, 370(1–4): 155–162. doi:  https://doi.org/10.1016/j.jhydrol.2009.03.003 CrossRefGoogle Scholar
  26. Li H Y, Wigmosta M S, Wu H et al., 2013. A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology, 14(3): 808–828. doi:  https://doi.org/10.1175/JHM-D-12-015.1 CrossRefGoogle Scholar
  27. Madsen H, 2000. Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. Journal of Hydrology, 235(3–4): 276–288. doi:  https://doi.org/10.1016/S0022-1694(00)00279-1 CrossRefGoogle Scholar
  28. Madsen H, Wilson G, Ammentorp H C 2002. Comparison of different automated strategies for calibration of rainfall-runoff models. Journal of Hydrology, 261(1–4): 48–59. doi:  https://doi.org/10.1016/S0022-1694(01)00619-9 CrossRefGoogle Scholar
  29. Madsen H, 2003. Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives. Advances in Water Resources, 26(2): 205–216. doi:  https://doi.org/10.1016/S0309-1708(02)00092-1 CrossRefGoogle Scholar
  30. Matott L S, Babendreier J E, Purucker S T, 2009. Evaluating uncertainty in integrated environmental models: a review of concepts and tools. Water Resources Research, 45(6): W06421. doi:  https://doi.org/10.1029/2008WR007301 CrossRefGoogle Scholar
  31. McCuen R H, Knight Z, Cutter A G, 2006. Evaluation of the Nash-Sutcliffe efficiency index. Journal of Hydrologic Engineering, 11(6): 597–602. doi:  https://doi.org/10.1061/(ASCE)1084-0699(2006)11:6(597) CrossRefGoogle Scholar
  32. Muleta M K, 2012. Model performance sensitivity to objective function during automated calibrations. Journal of Hydrologic Engineering, 17(6): 756–767. doi:  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000497 CrossRefGoogle Scholar
  33. Nash J E, Sutcliffe J V, 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology, 10(3): 282–290. doi:  https://doi.org/10.1016/0022-1694(70)90255-6 CrossRefGoogle Scholar
  34. Pokhrel P, Gupta H V, 2010. On the use of spatial regularization strategies to improve calibration of distributed watershed models. Water Resources Research, 46(1): W01505. doi: https://doi.org/10.1029/2009WR008066 CrossRefGoogle Scholar
  35. Price K, Purucker S T, Kraemer S R et al., 2012. Tradeoffs among watershed model calibration targets for parameter estimation. Water Resources Research, 48(10): W10542. doi:  https://doi.org/10.1029/2012WR012005 CrossRefGoogle Scholar
  36. Reed P, Minsker B S, Goldberg D E, 2003. Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II. Water Resources Research, 39(7): 1196. doi:  https://doi.org/10.1029/2002WR001483 CrossRefGoogle Scholar
  37. Schaefli B, Gupta H V, 2007. Do Nash values have value? Hydrological Processes, 21(15): 2075–2080. doi:  https://doi.org/10.1002/hyp.6825 CrossRefGoogle Scholar
  38. Sun Y, Tian F Q, Yang L et al., 2014. Exploring the spatial variability of contributions from climate variation and change in catchment properties to streamflow decrease in a mesoscale basin by three different methods. Journal of Hydrology, 508: 170–180. doi:  https://doi.org/10.1016/j.jhydrol.2013.11.004 CrossRefGoogle Scholar
  39. Tang Y, Reed P, Wagener T, 2006. How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration? Hydrology and Earth System Sciences, 10(2): 289–307. doi:  https://doi.org/10.5194/hess-10-289-2006 CrossRefGoogle Scholar
  40. Tang Y, Reed P M, Kollat J B, 2007. Parallelization strategies for rapid and robust evolutionary multiobjective optimization in water resources applications. Advances in Water Resources, 30(3): 335–353. doi:  https://doi.org/10.1016/j.advwatres.2006.06.006 CrossRefGoogle Scholar
  41. Tekleab S, Uhlenbrook S, Mohamed Y et al., 2011. Water balance modeling of Upper Blue Nile catchments using a top-down approach. Hydrology and Earth System Sciences, 15(7): 2179–2193. doi:  https://doi.org/10.5194/hess-15-2179-2011 CrossRefGoogle Scholar
  42. van Griensven A, Bauwens W, 2003. Multiobjective autocalibration for semidistributed water quality models. Water Resources Research, 39(12): 1348. doi:  https://doi.org/10.1029/2003WR002284 CrossRefGoogle Scholar
  43. van Werkhoven K, Wagener T, Reed P et al., 2009. Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models. Advances in Water Resources, 32(8): 1154–1169. doi:  https://doi.org/10.1016/j.advwatres.2009.03.002 CrossRefGoogle Scholar
  44. Vrugt J A, Bouten W, Gupta H V et al., 2002. Toward improved identifiability of hydrologic model parameters: the information content of experimental data. Water Resources Research, 38(12): 1312. doi:  https://doi.org/10.1029/2001WR001118 CrossRefGoogle Scholar
  45. Vrugt J A, Gupta H V, Bastidas L A et al., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8): 1214–1232. doi:  https://doi.org/10.1029/2002WR001746 Google Scholar
  46. Wagener T, 2003. Evaluation of catchment models. Hydrological Processes, 17(16): 3375–3378. doi:  https://doi.org/10.1002/hyp.5158 CrossRefGoogle Scholar
  47. Yapo P O, Gupta H V, Sorooshian S, 1998. Multi-objective global optimization for hydrologic models. Journal of Hydrology, 204(1–4): 83–97. doi:  https://doi.org/10.1016/S0022-1694(97)00107-8 CrossRefGoogle Scholar
  48. Zhao R J, 1992. The Xinanjiang model applied in China. Journal of Hydrology, 135(1–4): 371–381. doi:  https://doi.org/10.1016/0022-1694(92)90096-E Google Scholar

Copyright information

© Science Press, Northeast Institute of Geography and Agroecology, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Fuqiang Tian
    • 1
    Email author
  • Hongchang Hu
    • 1
  • Yu Sun
    • 1
  • Hongyi Li
    • 2
  • Hui Lu
    • 3
  1. 1.Department of Hydraulic EngineeringTsinghua UniversityBeijingChina
  2. 2.Department of Civil and Environmental EngineeringUniversity of HoustonHoustonUSA
  3. 3.Department of Earth System ScienceTsinghua UniversityBeijingChina

Personalised recommendations