Advertisement

Wiener Index, Hyper-Wiener Index, Harary Index and Hamiltonicity Properties of graphs

  • Gui-dong YuEmail author
  • Li-fang Ren
  • Xing-xing Li
Article
  • 6 Downloads

Abstract

In this paper, in terms of Wiener index, hyper-Wiener index and Harary index, we first give some sufficient conditions for a nearly balance bipartite graph with given minimum degree to be traceable. Secondly, we establish some conditions for a k-connected graph to be Hamilton-connected and traceable for every vertex, respectively.

Keywords

Wiener index Hyper-Wiener index Harary index Traceable Hamilton-connected Traceable for every vertex 

MR Subject Classification

05C50 15A18 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J A Bondy, U S R Murty. Graph Theory, Grad Texts in Math, 2008, 244.Google Scholar
  2. [2]
    J A Bondy, U S R Murty. Graph Theory with Applications, MacMillan Press, London, 1976.CrossRefzbMATHGoogle Scholar
  3. [3]
    Z Cui, B Liu. On Harary matrix, Harary index and Harary energy, Match Commu Math Comput Chem, 2012, 68: 815–823.MathSciNetzbMATHGoogle Scholar
  4. [4]
    G X Cai, M L Ye, G D Yu, L F Ren. Hyper-Wiener index and Hamiltonicity of graphs, Ars Combinatoria, 2018, 139: 175–184.MathSciNetzbMATHGoogle Scholar
  5. [5]
    H B Hua, M Wang. On Harary index and traceable graphs, Match Commun Math Comput Chem, 2013, 70: 297–300.MathSciNetzbMATHGoogle Scholar
  6. [6]
    H B Hua, B Ning. Wiener index, Harary index and Hamiltonicity of graphs, Match Commun Math Comput Chem, 2017, 78(1): 153–162.MathSciNetGoogle Scholar
  7. [7]
    O Ivanciuc, T S Balaban, A T Balaban. Reciprocal distance matrix, related local vertex invariants and topological indices, J Math Chem, 1993, 12: 309–318.MathSciNetCrossRefGoogle Scholar
  8. [8]
    D J Klein, I Lukovits, I Gutman. On the defination of the hyperWiener index for cycle-containing structures, J Chem Inf Comput Sci, 1995, 35: 50–52.CrossRefGoogle Scholar
  9. [9]
    R F Liu, X Du, H C Jia. Wiener index on traceable and Hamiltonian graph, Bull Aust Math Soc, 2016, 94(3): 362–372.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    R F Liu, X Du, H C Jia. Some observations on Harary index and traceable graphs, Match Commun Math Comput Chem, 2017, 77(1): 195–208.MathSciNetGoogle Scholar
  11. [11]
    D Plavšić, S Nikolić, N Trinajstić, Z Mihalić. On the Harary index for the characterization of chemical graphs, J Math Chem, 1993, 12: 235–250.MathSciNetCrossRefGoogle Scholar
  12. [12]
    R Li. Wiener Index and Some Hamiltonian Properties of Graphs, Int J Math Soft Computing, 2015, 5(1): 11–16.MathSciNetCrossRefGoogle Scholar
  13. [13]
    R Li. Harary index and some Hamiltonian properties of graphs, AKCE Int J Graphs Comb, 2015, 12: 64–69.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M Randić. Novel molecular descriptor for structure-property studies, Chem Phys Lett, 1993, 211: 478–483.CrossRefGoogle Scholar
  15. [15]
    H Wiener. Structural determination of paraffin boiling points, J Am Chem Soc, 1947, 69(1): 17.CrossRefGoogle Scholar
  16. [16]
    G D Yu, R Li, X B Xing. Spectral invariants and some stable properties of a graph, Ars Combinatoria, 2015, 121: 33–46.MathSciNetzbMATHGoogle Scholar
  17. [17]
    G D Yu, Y Fang, Y Z Fan. Spectral Radius and Hamiltonicity of graphs, DOI: arXiv: 1705.01683.Google Scholar
  18. [18]
    T Zeng. Harary index and hamiltonian property of graphs, Match Commun Math Comput Chem, 2013, 70: 645–649.MathSciNetzbMATHGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics 2019

Authors and Affiliations

  1. 1.School of Mathmatics and Computation SciencesAnqing Normal UniversityAnqingChina
  2. 2.Basic DepartmentHefei Preschool Education CollegeHefeiChina

Personalised recommendations