Advertisement

The exponentiated generalized power Lindley distribution: Properties and applications

  • S.M.T.K. MirMostafaeeEmail author
  • Morad Alizadeh
  • Emrah Altun
  • Saralees Nadarajah
Article

Abstract

In this paper, we introduce a new extension of the power Lindley distribution, called the exponentiated generalized power Lindley distribution. Several mathematical properties of the new model such as the shapes of the density and hazard rate functions, the quantile function, moments, mean deviations, Bonferroni and Lorenz curves and order statistics are derived. Moreover, we discuss the parameter estimation of the new distribution using the maximum likelihood and diagonally weighted least squares methods. A simulation study is performed to evaluate the estimators. We use two real data sets to illustrate the applicability of the new model. Empirical findings show that the proposed model provides better fits than some other well-known extensions of Lindley distributions.

Keywords

Anderson-Darling test statistic Exponentiated generalized class of distributions Lambert function Maximum likelihood method Power Lindley distribution 

MR Subject Classification

60E05 62F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to thank the referee for the valuable comments which led to this improved version of our manuscript.

References

  1. [1]
    M Alizadeh, S M T K MirMostafaee, E Altun, G Ozel, M Khan Ahmadi. The odd log-logistic Marshall-Olkin power Lindley distribution: Properties and applications, J Stat Manag Syst, 2017, 20(6): 1065–1093.CrossRefGoogle Scholar
  2. [2]
    M Alizadeh, S M T K MirMostafaee, I Ghosh. A new extension of power Lindley distribution for analyzing bimodal data, Chilean J Stat, 2017, 8(1): 67–86.MathSciNetGoogle Scholar
  3. [3]
    T Andrade, H Rodrigues, M Bourguignon, G M Cordeiro. The exponentiated generalized Gumbel distribution, Rev Colombiana Estadíst, 2015, 38(1): 123–143.MathSciNetCrossRefGoogle Scholar
  4. [4]
    G Aryal, I Elbatal. On the exponentiated generalized modified Weibull distribution, Commun Stat Appl Methods, 2015, 22(4): 333–348.Google Scholar
  5. [5]
    S K Ashour, M A Eltehiwy. Exponentiated power Lindley distribution, J Adv Res, 2015, 6(6): 895–905.CrossRefGoogle Scholar
  6. [6]
    M Bourguignon, R B Silva, G M Cordeiro. The Weibull-G family of probability distributions, J Data Sci, 2014, 12(1): 53–68.MathSciNetGoogle Scholar
  7. [7]
    G Chen, N Balakrishnan. A general purpose approximate goodness-of-fit test, J Qual Technol, 1995, 27(2): 154–161.CrossRefGoogle Scholar
  8. [8]
    R S Chhikara, J L Folks. The inverse Gaussian distribution as a lifetime model, Technometrics, 1977, 19(4): 461–468.CrossRefzbMATHGoogle Scholar
  9. [9]
    G M Cordeiro, A J Lemonte. The exponentiated generalized Birnbaum-Saunders distribution, Appl Math Comput, 2014, 247: 762–779.MathSciNetzbMATHGoogle Scholar
  10. [10]
    G M Cordeiro, E M M Ortega, D C C da Cunha. The exponentiated generalized class of distributions, J Data Sci, 2013, 11(1): 1–27.MathSciNetGoogle Scholar
  11. [11]
    R M Corless, G H Gonnet, D E G Hare, D J Jeffrey, D E Knuth. On the Lambert W function, Adv Comput Math, 1996, 5(1): 329–359.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M E Ghitany, B Atieh, S Nadarajah. Lindley distribution and its application, Math Comput Simulation, 2008, 78(4): 493–506.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M E Ghitany, D K Al-Mutairi, N Balakrishnan, L J Al-Enezi. Power Lindley distribution and associated inference, Comput Statist Data Anal, 2013, 64: 20–33.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    I S Gradshteyn, I M Ryzhik. Table of Integrals, Series, and Products, 6th ed., Corrected by A Jeffrey, D Zwillinger, Academic Press, 2000, San Diego.Google Scholar
  15. [15]
    B Hasselman. Solve systems of nonlinear equations, 2018, R package version 3.3.2. https://cran.r-project.org/package=nleqslv.Google Scholar
  16. [16]
    P Jodrá. Computer generation of random variables with Lindley or Poisson-Lindley distribution via the Lambert W function, Math Comput Simulation, 2010, 81(4): 851–859.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    E L Lehmann, G Casella. Theory of Point Estimation, 2nd ed., Springer-Verlag, 1998, New York.zbMATHGoogle Scholar
  18. [18]
    D V Lindley. Fiducial distributions and Bayes’ theorem, J R Stat Soc Ser B Stat Methodol, 1958, 20(1): 102–107.MathSciNetzbMATHGoogle Scholar
  19. [19]
    S Nadarajah, H S Bakouch, R Tahmasbi. A generalized Lindley distribution, Sankhyā B, 2011, 73(2): 331–359.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    B O Oluyede, F Mutiso, S Huang. The log generalized Lindley-Weibull distribution with application, J Data Sci, 2015, 13(2): 281–310.Google Scholar
  21. [21]
    P E Oguntunde, O A Odetunmibi, A O Adejumo. On the exponentiated generalized Weibull distribution: a generalization of the Weibull distribution, Indian J Sci Technol, 2015, 8(35), DOI: 10.17485/ijst/2015/v8i35/67611.Google Scholar
  22. [22]
    J Pinheiro, D Bates, S DebRoy, D Sarkar, EISPACK authors, S Heisterkamp, B V Willigen, R Core Team. Linear and nonlinear mixed effects models, 2018, R package version 3.1-137. https://cran.r-project.org/package=nlme.Google Scholar
  23. [23]
    R Core Team. R: A language and environment for statistical computing, 2018, R Foundation for Statistical Computing, Vienna, Austria, URL: http://www.R-project.org/.Google Scholar
  24. [24]
    A O Silva, L C M da Silva, G M Cordeiro. The extended Dagum distribution: Properties and application, J Data Sci, 2015, 13(1): 53–72.Google Scholar
  25. [25]
    W H Von Alven. (Ed.) Reliability Engineering, ARINC Research Corporation, 1964, Prentice-Hall.Google Scholar
  26. [26]
    G Warahena-Liyanage, M Pararai. A generalized power Lindley distribution with applications, Asian J Math Appl, 2014, vol. 2014, Article ID ama0169, 23 pages.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics 2019

Authors and Affiliations

  • S.M.T.K. MirMostafaee
    • 1
    Email author
  • Morad Alizadeh
    • 2
  • Emrah Altun
    • 3
  • Saralees Nadarajah
    • 4
  1. 1.Department of StatisticsUniversity of MazandaranBabolsarIran
  2. 2.Department of StatisticsPersian Gulf UniversityBushehrIran
  3. 3.Department of StatisticsBartin UniversityBartinTurkey
  4. 4.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations