Reductivity and bundle shifts

  • An-jian Xu


For the Hardy space H E 2 (R) over a at unitary vector bundle E on a finitely connected domain R, let TE be the bundle shift as [3]. If \(\mathcal{B}\) is a reductive algebra containing every operator ψ(TE) for any rational function ψ with poles outside of R, then \(\mathcal{B}\) is self adjoint.


reductivity bundle shift multiply-connected domain 

MR Subject Classification

Primary 47B35, 46B32 Secondary 05A38, 15A15 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M B Abrahamse. Toeplitz Operators in Multiply Connected Regions, Amer J Math, Vol 96, No 2 (1972), pp: 261–297.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M B Abrahamse, J J Bastian. Bundle Shifts and Ahlfors Functions, Proc Amer Math Soci, Vol 72, No 1(1978), pp: 106–148.Google Scholar
  3. 3.
    M B Abrahamse, R G Douglas. A Class of Subnormal Operators Related to Multiply-Connected Domains, Adv Math, Vol 19(1976), pp: 106–148.Google Scholar
  4. 4.
    L V Ahlfors. Bounded Analytic Functions, Duke Math J, Vol 14, No 1(1947), pp: 1–11.zbMATHGoogle Scholar
  5. 5.
    W B Arveson. A density Theorem for Operator Algebras, Duke Math J, Vol 34, No 4(1967), pp: 635–647.zbMATHGoogle Scholar
  6. 6.
    H Bercovici, R G Douglas, C Foias, C Pearcy. Con uent operator algebras and the closability property, J Funct Anal, Vol 258 (2010), pp: 4122–4153.zbMATHGoogle Scholar
  7. 7.
    G Z Cheng, K Y Guo, K Wang. Tansitive Algebras and Reductive Algebras on Reproducing Analytic Hilbert Spaces, J Func Anal, Vol 258 (2010), pp: 4229–4250.zbMATHGoogle Scholar
  8. 8.
    R G Douglas, A J Xu. Tansitivity and Bundle Shifts, Invariant Subspaces of the Shift Operator, Contemp Math 638, pp: 287–297.Google Scholar
  9. 9.
    R G Douglas, K K Dineshi, A J Xu. Generalized Bundle Shifts with Application to Toeplitz Operator on Bergman Spaces, J Operator Theory, Vol 75, No 1(2016), pp: 3–19.Google Scholar
  10. 10.
    E A Nordgren. Tansitive Operator Algebras, J Math Anal App, Vol 32 (1967), pp: 639–643.Google Scholar
  11. 11.
    E A Nordgren, P Rosenthal. Algebras Containing Unilateral Shifts or Finite-rank Operators, Duke Math J, Vol 40 (1973), pp: 419–424.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H Radjavi, P Rosenthal. A suffcient condition that an operator algebra be self adjoint, Canad J Math, Vol 23 (1971), pp: 588–597.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    S Richter. Invariant Subspaces of the Dirichlet Shift, J reine angew Math, Vol 386 (1988), pp: 205–220.MathSciNetzbMATHGoogle Scholar
  14. 14.
    M Voichick. Ideals and Invariant Subspaces of Analytic Functions, Trans Amer Math, Vol 111, No 3(1964), pp: 493–512.Google Scholar
  15. 15.
    M Voichick. Inner and Outer Functions on Riemann Surfaces, Proc Amer Math Soc, Vol 16, No 6(1965), pp: 1200–1204.Google Scholar

Copyright information

© Editorial Committee of Applied Mathematics 2019

Authors and Affiliations

  • An-jian Xu
    • 1
  1. 1.College of ScienceChongqing University of TechnologyChongqingChina

Personalised recommendations