A cascaded approach for image defogging based on physical and enhancement models

  • Najmul Hassan
  • Sami Ullah
  • Naeem BhattiEmail author
  • Hasan Mahmood
  • Muhammad Zia
Original Paper


In this paper, we propose a novel cascade strategy approach for visibility restoration in foggy images. The proposed cascade strategy is based on the combination of enhancement and physical models, the contrast limited adaptive histogram equalization (CLAHE) and no-black pixel constraint with planar assumption (NBPC \(+\) PA) methods. The use of CLAHE enhances the visibility of foggy image, but it produces color and edge distortion, boosts noise and creates halo effects. We overcome these shortcomings of CLAHE by feeding its output to the NBPC \(+\) PA. In order to improve the cascaded performance of the two methods, we determine the suitable parameters. The proposed cascading utilizes the individual strengths of the two approaches which in turn provides better defogging results for homogeneous as well as inhomogeneous fog. We present objective quality assessment and visibility enhancement of various foggy images. The experimental results verify the enhanced defogging capabilities of the proposed cascade strategy compared to the existing defogging algorithms.


Image defogging Enhancement and physical models CLAHE NBPC \(+\) PA Cascade approach 



  1. 1.
    Rong, Z., Jun, W.L.: Improved wavelet transform algorithm for single image dehazing. Opt. Int. J. Light Electron Opt. 125(13), 3064–3066 (2014)CrossRefGoogle Scholar
  2. 2.
    Wang, W., Yuan, X.: Recent advances in image dehazing. IEEE/CAA J. Autom. Sinica 4(39), 410–436 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kim, J.Y., Kim, L.S., Hwang, S.H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)CrossRefGoogle Scholar
  4. 4.
    Xu, Y., Wen, J., Fei, L., Zhang, Z.: Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4, 165–188 (2016)CrossRefGoogle Scholar
  5. 5.
    Tarel, J.P., Hautiere, N.: Fast visibility restoration from a single color or gray level image. In: ICCV, pp. 2201–2208 (2009)Google Scholar
  6. 6.
    Tarel, J.P., Hautiere, N., Caraffa, L., Cord, A., Halmaoui, H., Gruyer, D.: Vision enhancement in homogeneous and heterogeneous fog. IEEE Intell. Transp. Syst. Mag. 4(2), 6–20 (2012)CrossRefGoogle Scholar
  7. 7.
    Zhang, L., Wang, S., Wang, X.: Saliency-based dark channel prior model for single image haze removal. IET Image Process. 12(6), 1049–1055 (2018)CrossRefGoogle Scholar
  8. 8.
    Salazar-Colores, S., Ramos-Arreguín, J.M., Echeverri, C.J.O., Cabal-Yepez, E., Pedraza-Ortega, J.C., Rodriguez-Resendiz, J.: Image dehazing using morphological opening, dilation and Gaussian filtering. Signal Image Video Process. 12(7), 1329–1335 (2018)CrossRefGoogle Scholar
  9. 9.
    Xiao, J., Zhu, L., Zhang, Y., Liu, E., Lei, J.: Scene-aware image dehazing based on sky-segmented dark channel prior. IET Image Process. 11(12), 1163–1171 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Huang, S.C., Chen, B.H., Wang, W.J.: Visibility restoration of single hazy images captured in real-world weather conditions. IEEE Trans. Circuits Syst. Video Technol. 24(10), 1814–1824 (2014)CrossRefGoogle Scholar
  12. 12.
    Nishino, K., Kratz, L., Lombardi, S.: Bayesian defogging. Int. J. Comput. Vis. 98(3), 263–278 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Petro, A.B., Sbert, C., Morel, J.M.: Multiscale retinex. Image Processing On Line 4, 71–88 (2014)CrossRefGoogle Scholar
  14. 14.
    Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 72 (2008)CrossRefGoogle Scholar
  15. 15.
    He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)CrossRefGoogle Scholar
  16. 16.
    Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)Google Scholar
  17. 17.
    Sun, W., Wang, H., Sun, C., Guo, B., Jia, W., Sun, M.: Fast single image haze removal via local atmospheric light veil estimation. Comput. Electr. Eng. 46, 371–383 (2015)CrossRefGoogle Scholar
  18. 18.
    Ancuti, C.O., Ancuti, C., Hermans, C., Bekaert, P.: A fast semi-inverse approach to detect and remove the haze from a single image. In: ACCV, pp. 501–514 (2010)Google Scholar
  19. 19.
    Sulami, M., Glatzer, I., Fattal, R., Werman, M.: Automatic recovery of the atmospheric light in hazy images. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–11 (2014)Google Scholar
  20. 20.
    Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert, P. (ed.) Graphics gems IV, pp. 474–485. Academic Press (1994)Google Scholar
  21. 21.
    Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2020

Authors and Affiliations

  • Najmul Hassan
    • 1
  • Sami Ullah
    • 1
  • Naeem Bhatti
    • 1
    Email author
  • Hasan Mahmood
    • 1
  • Muhammad Zia
    • 1
  1. 1.COMSIP LAB, Department of ElectronicsQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations