Signal, Image and Video Processing

, Volume 13, Issue 8, pp 1611–1617 | Cite as

An efficient pyramid multi-level image descriptor: application to image-based parking lot monitoring

  • F. DornaikaEmail author
  • K. Hammoudi
  • M. Melkemi
  • T. D. A. Phan
Original Paper


Efficient analysis of parking slot occupancy is still a complex task in reason of the variety of slot textures and of the difficulty to characterize the relevant information of their associated images. In this paper, we propose a handcrafted approach supported by machine learning techniques. The two main contributions are as follows: Firstly, we introduce a compact handcrafted image descriptor, named pyramid multi-level descriptor (PMLD), designed to capture features at different scales and at different receptive fields in the image region. Secondly, we provide a comparative study of several popular image-based handcrafted and deep learning features. Experiments are conducted on two public datasets: PKLot and CNRPark. It follows that PMLD achieves better results than classical handcrafted descriptors and achieves similar results to those obtained by transfer learning of the deep CNN VGG-F.


Parking lot monitoring Handcrafted image features Multi-scale representation Transfer learning Classification Performance evaluation 



  1. 1.
    Ahrnbom, M., Astrom, K., Nilsson, M.: Fast classification of empty and occupied parking spaces using integral channel features. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1609–1615 (2016)Google Scholar
  2. 2.
    Amato, G., Carrara, F., Falchi, F., Gennaro, C., Meghini, C., Vairo, C.: Deep learning for decentralized parking lot occupancy detection. Expert Syst. Appl. 72, 327–334 (2017)CrossRefGoogle Scholar
  3. 3.
    Amato, G., Carrara, F., Falchi, F., Gennaro, C., Vairo, C.: Car parking occupancy detection using smart camera networks and deep learning. In: IEEE Symposium on Computers and Communications, pp. 1212–1217 (2016)Google Scholar
  4. 4.
    Baroffio, L., Bondi, L., Cesana, M., Redondi, A., Tagliasacchi, M.: A visual sensor network for parking lot occupancy detection in smart cities. In: IEEE World Forum on Internet of Things, pp. 745–750 (2015)Google Scholar
  5. 5.
    Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. In: British Machine Vision Conference, pp. 1–12 (2014)Google Scholar
  6. 6.
    Dalal, N., Triggs, B., Schmid, C.: Human Detection Using Oriented Histograms of Flow and Appearance, pp. 428–441. Springer, Berlin (2006)Google Scholar
  7. 7.
    Davarpanah, S.H., Khalid, F., Nurliyana Abdullah, L., Golchin, M.: A texture descriptor: background local binary pattern (BGLBP). Multimed. Tools Appl. 75(11), 6549–6568 (2016)CrossRefGoogle Scholar
  8. 8.
    de Almeida, P.R., Oliveira, L.S., Britto, A.S., Silva, E.J., Koerich, A.L.: PKLot—a robust dataset for parking lot classification. Expert Syst. Appl. 42, 4937–4949 (2015)CrossRefGoogle Scholar
  9. 9.
    del Postigo, C.G., Torres, J., Menéndez, J.M.: Vacant parking area estimation through background subtraction and transience map analysis. IET Intell. Transp. Syst. 9, 835–841 (2015)CrossRefGoogle Scholar
  10. 10.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)Google Scholar
  11. 11.
    Grodi, R., Rawat, D.B., Rios-Gutierrez, F.: Smart parking: parking occupancy monitoring and visualization system for smart cities. In: SoutheastCon, pp. 1–5 (2016)Google Scholar
  12. 12.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recognit. 42(3), 425–436 (2009)CrossRefGoogle Scholar
  13. 13.
    Jensen, T.H., Schmidt, H.T., Bodin, N.D., Nasrollahi, K., Moeslund, T.B.: Parking space occupancy verification - improving robustness using a convolutional neural network. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, vol. 5, pp. 311–318 (2017)Google Scholar
  14. 14.
    Kalyoncu, C., Toygar, O.: Gtclc: leaf classification method using multiple descriptors. IET Comput. Vis. 10(7), 700–708 (2016)CrossRefGoogle Scholar
  15. 15.
    Mäenpää, T., Pietikainen, M.: Classification with color and texture: jointly or separately? Pattern Recognit. 37(8), 1629–1640 (2004)CrossRefGoogle Scholar
  16. 16.
    Mäenpää, T., Pietikainen, M., Viertola, J.: Separating color and pattern information for color texture discrimination. In: IEEE International Conference on Pattern Recognition, vol. 1, pp. 668–671 (2002)Google Scholar
  17. 17.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: A generalized local binary pattern operator for multiresolution gray scale and rotation invariant texture classification. In: International Conference on Advances in Pattern Recognition, pp. 397–406 (2001)Google Scholar
  18. 18.
    Shin, J., Kim, N., Jun, H.B., Kim, D.Y.: A dynamic information-based parking guidance for megacities considering both public and private parking. J. Adv. Transp. 2017, 1–19 (2017)CrossRefGoogle Scholar
  19. 19.
    Silva, C., Bouwmans, T., Frélicot, C.: An extended center-symmetric local binary pattern for background modeling and subtraction in videos. In: International Conference on Computer Vision Theory and Applications, pp. 395–402 (2015)Google Scholar
  20. 20.
    Szeliski, R.: Computer Vision Algorithms and Applications. Springer, London (2011)zbMATHGoogle Scholar
  21. 21.
    Tschentscher, M., Koch, C., Konig, M., Salmen, J., Schlipsing, M.: Scalable real-time parking lot classification: an evaluation of image features and supervised learning algorithms. In: International Joint Conference on Neural Networks, pp. 1–8 (2015)Google Scholar
  22. 22.
    Ullrich, T.: Parking lot occupancy monitor. Technical Report ECE-499, Union College (2017)Google Scholar
  23. 23.
    Valipour, S., Siam, M., Stroulia, E., Jagersand, M.: Parking-stall vacancy indicator system, based on deep convolutional neural networks. In: IEEE World Forum on Internet of Things, pp. 655–660 (2016)Google Scholar
  24. 24.
    Wu, H., Liu, N., Luo, X., Su, J., Chen, L.: Real-time background subtraction-based video surveillance of people by integrating local texture patterns. Signal Image Video Process. 8(4), 665–676 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of the Basque Country UPV/EHUSan SebastianSpain
  2. 2.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  3. 3.IRIMASUniversité de Haute-AlsaceMulhouseFrance
  4. 4.Université de StrasbourgStrasbourgFrance

Personalised recommendations