Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 8, pp 1649–1656 | Cite as

Single-channel source separation and parameters estimation of multi-component BPSK/QPSK signal based on 3-D EVR spectrum and wavelet analysis

  • Hang ZhuEmail author
  • Jian-jun Shen
  • Zheng Dai
  • Wei Song
  • Zhong-xiang Chang
Original Paper
  • 72 Downloads

Abstract

This paper proposes an approach of single-channel source separation and parameter estimation of multi-component rectangular pulse-shaped BPSK/QPSK (binary/quadrature phase-shift keying) signal. By structuring multi-dimensional matrix from the observed signal, we may then apply 3-D EVR spectrum to determine the delay time and symbol period and therefore to estimate the basic waveform. A cost function is designed to estimate the carrier frequency and initial phase, and the periodic ambiguity problem is solved through wavelet analysis to get accurate symbol period. Finally, the component signal can be reconstructed with estimated parameters, and the separation stops adaptively by the SNR value which is estimated with the method of subspace-based decomposition. Simulation results confirmed the effectiveness of the proposed method.

Keywords

Multi-component signal Symbol period Source separation Parameters estimation 3-D EVR spectrum Wavelet analysis BPSK/QPSK signal 

Notes

References

  1. 1.
    Yu Z. H., Shi Y. Q., Su W.: A blind carrier frequency estimation algorithm for digitally modulated signals. In: Military Communications Conference, Monterey, USA, pp. 48–53 (2004)Google Scholar
  2. 2.
    Li, Y., Li, G.T., Yang, G.Q.: Automatic digital modulation recognition algorithm of communication signals. J. Electron. Inf. Technol. 27(2), 197–201 (2005)Google Scholar
  3. 3.
    Ho, K.C., Prokopiw, W., Chan, Y.T.: Modulation identification of digital signals by the wavelet transform. IEE Proc.—Radar Sonar Navig. 147(4), 169–176 (2000)CrossRefGoogle Scholar
  4. 4.
    Wang, L., Zhang, G.X., Bian, D.M.: Blind symbol rate estimation of satellite communication signal by Haar wavelet transform. J. Electron. 28(2), 198–203 (2011)Google Scholar
  5. 5.
    Djurovic, Igor: Estimation of sinusoidal frequency-modulated signal parameters in high-noise environment. Signal Image Video Process. 11(8), 1537–1541 (2017)CrossRefGoogle Scholar
  6. 6.
    Jin, Y., Ji, H.B.: A new cyclic autocorrelation based blind parameter estimation method for PSK signals. J. Xidian Univ. 33(6), 892–901 (2006)MathSciNetGoogle Scholar
  7. 7.
    Wen J.Y.: Parameter estimation in detection of BPSK radar signals. In: IET International Radar Conference 2009, Guilin, China, pp. 1–4 (2009)Google Scholar
  8. 8.
    Cui, W.L., Jiang, H., Li, J.Q.: Improved fast cyclic spectral estimation algorithm and performance analysis. J. Electron. Inf. Technol. 33(7), 1594–1599 (2011)CrossRefGoogle Scholar
  9. 9.
    Yu, N.Y., Ma, H.G., Shi, R.: Blind estimation of symbol rates of multi-component phase-shift Keying signals. J. Southwest Jiaotong Univ. 46(6), 904–909 (2011)Google Scholar
  10. 10.
    Hao, H.Y.: Multi-component LFM signal detection and parameter estimation-based on EEMD–FRFT. Optik 124, 6093–6096 (2013)CrossRefGoogle Scholar
  11. 11.
    Durak, L., Aldirmaz, S.: Adaptive fractional Fourier domain filtering. Signal Process. 90, 1188–1196 (2010)CrossRefGoogle Scholar
  12. 12.
    Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42, 3084–3091 (1994)CrossRefGoogle Scholar
  13. 13.
    Li, P., Wang, D.C., Wang, L.: Separation of micro-Doppler signals based on time frequency filter and Viterbi algorithm. Signal Image Video Process. 1(7), 593–605 (2007)Google Scholar
  14. 14.
    Liu, Y.: A fast and accurate single frequency estimator synthetic approach. Acta Electron. Sin. 27(6), 126–128 (1999)Google Scholar
  15. 15.
    Zou, H., Bao, Z.: An efficient algorithm for adaptive Chirplet-based decomposition. Acta Electron. Sin. 29(4), 515–517 (2001)Google Scholar
  16. 16.
    Zhu, H., Zhang, S.N., Zhao, H.C.: Single-channel source separation of radar fuze mixed signal using advanced adaptive decomposition. Acta Phys. Sin. 63(5), 058401 (2014)Google Scholar
  17. 17.
    Yin, Q.Y., Qian, S., Feng, A.G.: A fast refinement for adaptive Gaussian Chirplet decomposition. IEEE Trans. Signal Process. 50(6), 1298–1306 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hu, X.Y., Peng, S.L., Hwang, W.L.: Multicomponent AM-FM signal separation and demodulation with null space pursuit. Signal Image Video Process. 7(7), 1093–1120 (2013)CrossRefGoogle Scholar
  19. 19.
    Khan, N.A., Mohammadi, M., Ali, S.: Instantaneous frequency estimation of intersecting and close multi-component signals with varying amplitudes. Signal Image Video Process. 13(3), 517–524 (2019)CrossRefGoogle Scholar
  20. 20.
    Kanjilal, P.P.: Fetal ECG extraction from single-channel maternal ECG using singular value decomposition. IEEE Trans. Biomed. Eng. 44(1), 51–59 (1997)CrossRefGoogle Scholar
  21. 21.
    Zou M.Y., Chai Z.M., Unbehauen R.: Separation of periodic signals by using an algebraic method. In: Proceedings of the 1991 IEEE International Symposium on Circuits and Systems, Beijing, China, pp. 2427–2430 (1991)Google Scholar
  22. 22.
    Cheng H., Tang B., Du J.J.: Single channel pulse train radar signal separation using algebraic method. In: Proceedings of IEEE Radar Conference 2009, Guilin, China, pp. 382–385 (2009)Google Scholar
  23. 23.
    Shen, L., Sheng, D., Sun, M.H.: Anti-jamming algorithm of spread spectrum communication based on blind source separation in single channel. Chin. J. Radio Sci. 29(5), 922–927 (2014)Google Scholar
  24. 24.
    Zhu, H., Zhang, S.N., Zhao, H.C.: Single-channel source separation of multi-component radar signal with the same generalized period using ICA. Circuits Syst. Signal Process. 35, 353–363 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zhu, H., Zhang, S.N., Zhao, H.C.: Single channel source separation and parameter estimation of multi-component PRBCPM-SFM signal based on generalized period. Digit. Signal Process. 40, 224–237 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Andersin M., Mandayani N.B., Yates R.D.: Subspace based estimation of the signal to interference ratio for TDMA cellular systems. In: IEEE Vehicular Technology Conference, Atlanta, USA, pp. 1155–159 (1996)Google Scholar
  27. 27.
    Ramakrishna, D., Mandayani, N.B., Yates, R.D.: Subspace based SIR estimation for CDMA cellular systems. IEEE Trans. Veh. Technol. 49(5), 1732–1742 (2002)CrossRefGoogle Scholar
  28. 28.
    Zhang, J.C., Peng, H.: Robust blind SNR estimation method based on subspace decomposition. J. Data Acquis. Process. 26(5), 609–614 (2011)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Information and CommunicationNational University of Defense TechnologyWuhanChina

Personalised recommendations