Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 7, pp 1441–1449 | Cite as

DCT-based color image compression algorithm using adaptive block scanning

  • Abdelhamid MessaoudiEmail author
  • Fateh Benchabane
  • Kamel Srairi
Original Paper
  • 111 Downloads

Abstract

A lossy compression algorithm for still color images is presented. Based on DCT and using adaptive block scanning, the proposed method utilizes a simple technique to encode efficiently the DCT coefficients. The required image quality is guaranteed by using the bisection method to threshold the DCT coefficients of the YCbCr image gotten from the input RGB image. Four scan orders (zigzag, horizontal, vertical and hilbert) are used as adaptive block scanning to read the DCT coefficients from the retained DCT block coefficients. Following a scan order, an index vector is formed by the length of the zero-run sequence that preceded a nonzero DCT coefficient. The lowest value of the four index vectors maximums determines the best scan. Finally, the nonzero DCT coefficients and the index vector for each block are encoded to form the compressed image. The obtained results faced to those reported in recent methods show clearly that the proposed technique achieves high performances.

Keywords

Color image compression DCT Adaptive block scanning Image quality assessment Differential DC encoding Compression ratio 

Notes

References

  1. 1.
    Khalid, S.: Introduction to Data Compression, 4th edn. Elsevier, San Francisco (2006)zbMATHGoogle Scholar
  2. 2.
    Kurita, T., Otsu, N.: A method of block truncation coding for color image compression. IEEE Trans. Commun. 41(9), 1270–1274 (1993)CrossRefGoogle Scholar
  3. 3.
    Feng, Y.S., Nasrabadi, N.M.: Dynamic address-vector quantisation of RGB colour images. IEE Proc. I Commun. Speech Vision 138(4), 225–231 (1991)CrossRefGoogle Scholar
  4. 4.
    Clausen, C., Wechsler, H.: Color image compression using PCA and back propagation learning. Pattern Recognit. 33(9), 1555–1560 (2000)CrossRefGoogle Scholar
  5. 5.
    Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18–34 (1992)CrossRefGoogle Scholar
  6. 6.
    Dagher, I.: Highly-compacted DCT coefficients. Signal Image Video Process. 4(3), 303–307 (2010)CrossRefGoogle Scholar
  7. 7.
    Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: DCT based high quality image compression. In: Scandinavian Conference on Image Analysis, pp. 1177–1185. Springer, Berlin (2005)CrossRefGoogle Scholar
  8. 8.
    Ponomarenko, N., Lukin, V., Egiazarian, K., Astola, J.: ADCTC: Advanced DCT-Based Image Coder. In: Proceedings of LNLA, Switzerland (2008)Google Scholar
  9. 9.
    Xiong, Z., Ramchandran, K., Orchard, M.T., Zhang, Y.Q.: A comparative study of DCT and wavelet-based image coding. IEEE Trans. Circuits Syst. Video Technol. 9(5), 692–695 (1999)CrossRefGoogle Scholar
  10. 10.
    Pearlman, W., Islam, A., Nagaraj, N., Said, A.: Efficient, low complexity image coding with a set partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004)CrossRefGoogle Scholar
  11. 11.
    Shoitan, R., Nossair, Z., Isamil, I., Tobal, A.: Hybrid wavelet measurement matrices for improving compressive imaging. Signal Image Video Process. 11(1), 65–72 (2017)CrossRefGoogle Scholar
  12. 12.
    Ohm, J.R., Sullivan, G.J., Schwarz, H., Tan, T.K., Wiegand, T.: Comparison of the coding efficiency of video coding standards including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)CrossRefGoogle Scholar
  13. 13.
    Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1649–1668 (2012)CrossRefGoogle Scholar
  14. 14.
    Bauermann, I., Steinbach, E.: Further Lossless Compression of JPEG Images. Picture Coding Symposium. In: Proceedings of PCS San Francisco, December 15–17 (2004)Google Scholar
  15. 15.
    Ponomarenko, N., Egiazarian, K., Lukin, V., Astola, J.: Additional lossless compression of JPEG images. In : Proceedings of 4th Symposium on Image and Signal Processing and Analysis, Zagreb, Croatia, September, 117–120 (2005)Google Scholar
  16. 16.
    Silveira, T.L.T.D., Oliveira, R.S., Bayer, F.M., Cintra, R.J., Madanayake, A.: Multiplierless 16-point DCT approximation for low-complexity image and video coding. Signal Image Video Process. 11(2), 227–233 (2017)CrossRefGoogle Scholar
  17. 17.
    Douak, F., Benzid, R., Benoudjit, N.: Color image compression algorithm based on the DCT transform combined to an adaptive block scanning. AEU Int. J. Electron. Commun. 65(1), 16–26 (2011)CrossRefGoogle Scholar
  18. 18.
    Messaoudi, A., Srairi, K.: Colour image compression algorithm based on the DCT transform using difference lookup table. Electron. Lett. 52(20), 1685–1686 (2016)CrossRefGoogle Scholar
  19. 19.
    Kodak lossless true color image suite. http://www.r0k.us/graphics/kodak/. Accessed April 2019
  20. 20.
    USC-SIPI image database. http://sipi.usc.edu/database/database.php?volume=misc. Accessed April 2019
  21. 21.
    Lim, S., Kim, H., Choi, Y., Yu, S.: Fast intra-mode decision method based on DCT coefficients for h.264/avc. Signal Image Video Process. 9(2), 481–489 (2015)CrossRefGoogle Scholar
  22. 22.
    Yang, C., Zhao, Y., Wang, S.: Low bit-rate cloud-based image coding in the wavelet transform domain. Signal Image and Video Process. 12(8), 1437–1445 (2018)CrossRefGoogle Scholar
  23. 23.
    Benzid, R., Marir, F., Bouguechal, N.E.: Electrocardiogram compression method based on the adaptive wavelet coefficients quantization combined to a modified two-role encoder. IEEE Signal Process. Lett. 14(6), 373–376 (2007)CrossRefGoogle Scholar
  24. 24.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  25. 25.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    George, M., Thomas, M., Jayadas, C.K.: A methodology for spatial domain image compression based on hops encoding. Procedia Technol. 25, 52–59 (2016)CrossRefGoogle Scholar
  27. 27.
    Gaubatz, M.: MeTriX MuX Visual Quality Assessment Package. http://foulard.ece.cornell.edu/gaubatz/metrix_mux. Accessed April 2019
  28. 28.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM Matlab source code. https://www4.comp.polyu.edu.hk/~cslzhang/IQA/FSIM/ Files/FeatureSIM.m. Accessed April 2019
  29. 29.
    Dhara, B.C., Chanda, B.: Color image compression based on block truncation coding using pattern fitting principle. Pattern Recognit. 40(9), 2408–2417 (2007)CrossRefGoogle Scholar
  30. 30.
    Boucetta, A., Melkemi, K.E.: DWT Based-Approach for Color Image Compression Using Genetic Algorithm. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) Image and Signal Processing. ICISP 2012. Lecture Notes in Computer Science, vol. 7340. Springer, Berlin, Heidelberg (2012)Google Scholar
  31. 31.
    Rahul, K., Tiwari, A.K.: Saliency enabled compression in JPEG framework. IET Image Process. 12(7), 1142–1149 (2018).  https://doi.org/10.1049/iet-ipr.2017.0554 CrossRefGoogle Scholar
  32. 32.
    Aranda, J.J.G., Casquete, M.G., Cueto, M.C., Salmerón, J.N., Vidal, F.G.: Logarithmical hopping encoding: a low computational complexity algorithm for image compression. IET Image Process. 9(8), 643–651 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.MSE LaboratoryUniversity of BiskraBiskraAlgeria

Personalised recommendations