Advertisement

Evolutionary algorithms for sparse signal reconstruction

  • Murat Emre ErkocEmail author
  • Nurhan Karaboga
Original Paper
  • 32 Downloads

Abstract

This study includes an evolutionary algorithm technique for sparse signal reconstruction in compressive sensing. In general, l1 minimization and greedy algorithms are used to reconstruct sparse signals. In addition to these methods, recently, heuristic algorithms have begun to be used to reconstruct sparse signals. Heuristic algorithms are used in the field of compressive sensing by creating a hybrid structure with other methods or by optimizing the problem of sparse signal reconstruction on its own. This proposed method for evolutionary algorithms has a strategy similar to the sparse signal recovery method of greedy algorithms used in compressive sensing. In addition, this method has been applied for genetic and differential evolution algorithms. Firstly, the reconstruction performance of genetic and differential evolution algorithms is compared among each other. And then, the reconstruction performance of them is compared with l1 minimization method and greedy approaches. As a result from these studies, the proposed method for genetic and differential evolution algorithms can be used as the sparse signal recovery algorithm.

Keywords

Compressed sensing Differential evolution Genetic algorithm Greedy algorithms Sparse reconstruction 

Notes

References

  1. 1.
    Lin, Q.Z., Hu, B.S., Tang, Y., Zhang, L.Y., Chen, J.Y., Wang, X.M., Ming, Z.: A local search enhanced differential evolutionary algorithm for sparse recovery. Appl. Soft Comput. 57, 144–163 (2017).  https://doi.org/10.1016/j.asoc.2017.03.034 CrossRefGoogle Scholar
  2. 2.
    Pinto, S.E.M., Enrique, L., Florez, E.: Compressive sensing in FPGA and microcontroller. Int. J. Eng. Technol. 7(6), 2202–2206 (2016)Google Scholar
  3. 3.
    Candes, E.J.: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008).  https://doi.org/10.1016/j.crma.2008.03.014 MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006).  https://doi.org/10.1109/Tit.2005.862083 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).  https://doi.org/10.1109/Tit.2006.871582 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Candes, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008).  https://doi.org/10.1109/Msp.2007.914731 CrossRefGoogle Scholar
  7. 7.
    Wang, Q., Qu, G.R.: A new greedy algorithm for sparse recovery. Neurocomputing 275, 137–143 (2018).  https://doi.org/10.1016/j.neucom.2017.05.022 CrossRefGoogle Scholar
  8. 8.
    Xu, F.M., Wang, S.H.: A hybrid simulated annealing thresholding algorithm for compressed sensing. Sig. Process. 93(6), 1577–1585 (2013).  https://doi.org/10.1016/j.sigpro.2012.10.019 CrossRefGoogle Scholar
  9. 9.
    Rani, M., Dhok, S.B., Deshmukh, R.B.: A systematic review of compressive sensing: concepts, implementations and applications. IEEE Access 6, 4875–4894 (2018).  https://doi.org/10.1109/Access.2018.2793851 CrossRefGoogle Scholar
  10. 10.
    Zhou, Y., Kwong, S., Guo, H.N., Zhang, X., Zhang, Q.F.: A two-phase evolutionary approach for compressive sensing reconstruction. IEEE Trans. Cybern. 47(9), 2651–2663 (2017).  https://doi.org/10.1109/Tcyb.2017.2679705 CrossRefGoogle Scholar
  11. 11.
    Li, H., Fan, Y.Y., Zhang, Q.F., Xu, Z.B., Deng, J.D.: A multi-phase multiobjective approach based on decomposition for sparse reconstruction. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 601–608 (2016)Google Scholar
  12. 12.
    Li, D., Shi, C.L., Wang, Q., Shen, Y., Wang, Y.: Artificial immune algorithm based signal reconstruction for compressive sensing. Paper presented at the 2014 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) ProceedingsGoogle Scholar
  13. 13.
    Du, X.P., Cheng, L.Z., Chen, D.Q.: A simulated annealing algorithm for sparse recovery by l(0) minimization. Neurocomputing 131, 98–104 (2014).  https://doi.org/10.1016/j.neucom.2013.10.036 CrossRefGoogle Scholar
  14. 14.
    Li, D., Wang, Q., Shen, Y.: Intelligent greedy pursuit model for sparse reconstruction based on l(0) minimization. Sig. Process. 122, 138–151 (2016).  https://doi.org/10.1016/j.sigpro.2015.11.019 CrossRefGoogle Scholar
  15. 15.
    Du, X.P., Cheng, L.Z., Cheng, G.Q.: A heuristic search algorithm for the multiple measurement vectors problem. Sig. Process. 100, 1–8 (2014).  https://doi.org/10.1016/j.sigpro.2014.01.002 CrossRefGoogle Scholar
  16. 16.
    Chakraborty, U.K.: Evolutionary algorithm for compressive sensing. Int. J. Autom. Control 9(1), 61–70 (2015).  https://doi.org/10.1504/Ijaac.2015.068053 CrossRefGoogle Scholar
  17. 17.
    Du, X.P., Cheng, L.Z., Liu, L.F.: A swarm intelligence algorithm for joint sparse recovery. IEEE Signal Process. Lett. 20(6), 611–614 (2013).  https://doi.org/10.1109/Lsp.2013.2260822 CrossRefGoogle Scholar
  18. 18.
    Ghadyani, M., Shahzadi, A.: Adaptive joint sparse recovery algorithm based on Tabu search. Neurocomputing 224, 9–18 (2017).  https://doi.org/10.1016/j.neucom.2016.10.056 CrossRefGoogle Scholar
  19. 19.
    Lei, J., Liu, W.Y., Liu, S., Liu, Q.B.: Multiscale reconstruction algorithm for compressed sensing. ISA Trans. 53(4), 1152–1167 (2014).  https://doi.org/10.1016/j.isatra.2014.05.001 CrossRefGoogle Scholar
  20. 20.
    Brajovic, M., Lutovac, B., Orovic, I., Dakovic, M., Stankovic, S.: Sparse signal recovery based on concentration measures and genetic algorithm. Paper presented at the 2016 13th Symposium on Neural Networks and Applications (Neurel), Belgrade, Serbia, November, 2016Google Scholar
  21. 21.
    Shah, J.A., Qureshi, I.M., Khaliq, A.A., Omer, H.: Sparse signal recovery based on hybrid genetic algorithm. Res. J. Recent Sci. 3(5), 86–93 (2014)Google Scholar
  22. 22.
    Li, L., Yao, X., Stolkin, R., Gong, M.G., He, S.: An evolutionary multiobjective approach to sparse reconstruction. IEEE Trans. Evol. Comput. 18(6), 827–845 (2014).  https://doi.org/10.1109/Tevc.2013.2287153 CrossRefGoogle Scholar
  23. 23.
    Zhao, Y., He, X., Huang, T.W., Huang, J.J.: Smoothing inertial projection neural network for minimization Lp-q in sparse signal reconstruction. Neural Netw. 99, 31–41 (2018).  https://doi.org/10.1016/j.neunet.2017.12.008 CrossRefGoogle Scholar
  24. 24.
    Liu, Q.S., Wang, J.: L-1-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE Trans. Neural Netw. Learn. Syst. 27(3), 698–707 (2016).  https://doi.org/10.1109/Tnnls.2015.2481006 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu, B., Liu, Q., Member, S., Huang, T.: A discrete-time projection neural network for sparse signal reconstruction with application to face recognition. IEEE Trans. Neural Netw. Learn. Syst. (2018).  https://doi.org/10.1109/tnnls.2018.2836933 Google Scholar
  26. 26.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007).  https://doi.org/10.1109/Tit.2007.909108 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009).  https://doi.org/10.1016/j.acha.2008.07.002 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Srinivas, M., Patnaik, L.M.: Genetic algorithms—a survey. Computer 27(6), 17–26 (1994).  https://doi.org/10.1109/2.294849 CrossRefGoogle Scholar
  29. 29.
    Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).  https://doi.org/10.1023/A:1008202821328 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Karaboǧa, D., Okdem, S.: A simple and global optimization algorithm for engineering problems: differential evolution algorithm. Turk. J. Electr. Eng. Comput. Sci. 12, 53–60 (2004)Google Scholar
  31. 31.
    Davenport, M.A., Wakin, M.B.: Analysis of orthogonal matching pursuit using the restricted isometry property. IEEE Trans. Inf. Theory 56(9), 4395–4401 (2010).  https://doi.org/10.1109/Tit.2010.2054653 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Van Den Berg, E., Friedlander, M.P., Hennenfent, G., Herrmann, F.J., Saab, R., Yimaz, O.: Algorithm 890: Sparco: a testing framework for sparse reconstruction. ACM Trans. Math. Softw. (2009). 10.1145/1462173.1462178Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronics EngineeringErciyes UniversityKayseriTurkey

Personalised recommendations