Advertisement

Detection and restoration of multi-directional motion blurred objects

  • B. R. Kapuriya
  • Debasish PradhanEmail author
  • Reena Sharma
Original Paper

Abstract

In this paper, an object blur detection and deblurring technique is proposed to restore multi-directional motion blurred objects in a single image. We have proposed local blur angle detection method based on Radon transform (RT) and Laplacian of Gaussian (LoG). While capturing the images, motion blur occurs mainly due to either movement of the objects or movement of the camera. Here, we have focused to restore the objects which has been blurred by motion of the objects. The estimation of likely blur direction is calculated in the blurred image using RT and gradient operators. To detect blur angle locally at each pixel, the new local blur angle estimator using RT and LoG has been developed. Numerical experiments have been carried out for the proposed method, and the results are compared with the state-of-the-art methods.

Keywords

BID (blind image deconvolution) NBID (non-blind image deconvolution) Radon transform (RT) Fourier transform (FT) Laplacian of Gaussian (LoG) Point spread function (PSF) 

Notes

Acknowledgements

The authors would like to thank to Defence Institute of Advanced Technology, Pune, and Centre for Airborne Systems, Bangalore, for providing infrastructure to carry out the research work.

References

  1. 1.
    Gonzalez, R.C., Wintz, P.: Digital Image Processing. Addison-Wesley, New York (1987)zbMATHGoogle Scholar
  2. 2.
    Pratt, W.K.: Digital Image Processing. Wiley, New York (1991)zbMATHGoogle Scholar
  3. 3.
    Jain, A.K.: Fundamentals in Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  4. 4.
    Lagendijk, R.L., Biemond, J.: Iterative Identification and Restoration of Images. Kluwer, Boston (1991)zbMATHGoogle Scholar
  5. 5.
    Oliveira, J.P., Figueiredo, M.A.T., Bioucas-Dias, J.M.: Blind estimation of motion blur parameters for image deconvolution. In: Iberian Conference on Pattern Recognition and Image Analysis-IbPRIA, pp. 604–611 (2007)Google Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)zbMATHGoogle Scholar
  7. 7.
    Krahmer, F., Lin, Y., McAdoo, B., Ott, K., Wang, J., Widemannk, D.: Blind image deconvolution: motion blur estimation. Technical report, Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, Minnesota (2006)Google Scholar
  8. 8.
    Oliveira, J.P., Figueiredo, M.A.T., Bioucas-Dias, J.M.: Parametric blur estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans. Image Process. 23(1), 466–477 (2014)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Almeida, M.S.C., Almeida, L.B.: Blind and semi-blind deblurring of natural images. IEEE Trans. Image Process. 19(1), 36–52 (2010)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Cai, J.F., Ji, H., Liu, C., Shen, Z.: Framelet based blind motion deblurring from a single image. IEEE Trans. Image Process. 21(2), 562–572 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cai, J.F., Osher, S., Shen, Z.: Linearized Bregman iterations for frame-based image deblurring. SIAM J. Imaging Sci. 2(1), 226–252 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cai, J.F., Osher, S., Shen, Z.: Split Bregman method and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Cai, J.F., Ji, H., Liu, C., Shen, Z.: Blind motion deblurring from a single image using sparse approximation. In: CVPR (2009)Google Scholar
  14. 14.
    Cho, T.S., Paris, S., Horn, B.K.P., Freeman, W.T.: Blur kernel estimation using the radon transform. In: CVPR, pp. 241–248 (2011)Google Scholar
  15. 15.
    Ji, H., Liu, C.: Motion blur identification from image gradients. In: CVPR, pp. 1–8 (2008)Google Scholar
  16. 16.
    Richardson, W.H.: Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59 (1972)MathSciNetGoogle Scholar
  17. 17.
    Sun, H., Desvignes, M., Yan, Y., Liu, W.: Motion blur parameters identification from radon transform image gradients. In: Proceedings of the Conference on Industrial Electronics (2009)Google Scholar
  18. 18.
    Tai, Y.W., Tan, P., Brown, M.S.: Richardson–Lucy deblurring for scenes under a projective motion path. IEEE TPAMI 33(8), 1603–1618 (2011)Google Scholar
  19. 19.
    Sakano, M., Suetake, N., Uchino, E.: Robust identification of motion blur parameters by using angles of gradient vectors. In: Proceedings of ISPACS, pp. 522–525 (2006)Google Scholar
  20. 20.
    Gupta, A., Joshi, N., Zitnick, C.L., Cohen, M.F., Curless, B.: Single image deblurring using motion density functions. In: ECCV, pp. 171–184 (2010)Google Scholar
  21. 21.
    Tai, Y.W., Du, H., Brown, M., Lin, S.: Image/video deblurring using a hybrid camera. In: Proceedings of IEEE CVPR (2008)Google Scholar
  22. 22.
    Goldstein, A., Fattal, R.: Blur-kernel estimation from spectral irregularities. In: Proceedings of ECCV, pp. 622–635 (2012)Google Scholar
  23. 23.
    Oyamada, Y., Asai, H., Saito, H.: Blind deconvolution for a curved motion based on cepstral analysis. IPSJ Trans. Comput. Vis. Appl. (CVA) 3, 32–43 (2011)Google Scholar
  24. 24.
    Kheradmand, A., Milanfar, Peyman: A general framework for regularized, similarity-based image restoration. IEEE Trans. Image Process. 23(12), 5136–5151 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ji, H., Wang, K.: A two-stage approach to blind spatially-varying motion deblurring. In: CVPR (2012)Google Scholar
  26. 26.
    Levin, A.: Blind motion deblurring using image statistics. In: Proceedings of Advances in NIPS, pp. 841–848 (2006)Google Scholar
  27. 27.
    Kim, T.H., Lee, K.M.: Segmentation-free dynamic scene deblurring. In: CVPR, pp. 2766–2773 (2014)Google Scholar
  28. 28.
    Harmeling, S., Michael, H., Schoelkopf, B.: Space-variant single-image blind deconvolution for removing camera shake. In: NIPS (2010)Google Scholar
  29. 29.
    Kim, T.H., Nah, S., Lee, K.M.: Dynamic scene deblurring using a locally adaptive linear blur model. In: Computer Vision (2016)Google Scholar
  30. 30.
    Almeida, M.S.C., Almeida, L.B.: Blind deblurring of foreground background images. In: International Conference on Image Processing (ICIP), pp. 1301–1304 (2009)Google Scholar
  31. 31.
    Almeida, M.S.C., Figueiredo, M.A.: Parameter estimation for blind and nonblind deblurring using residual whiteness measures. IEEE Trans. Image Process. 22(7), 2751–2763 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Pan, J., Hu, Z., Su, Z., Lee, H.-Y., Yang, M.-H.: Soft-segmentation guided object motion deblurring (2015)Google Scholar
  33. 33.
    Mignotte, M.: An adaptive segmentation-based regularization term for image restoration. In: IEEE International Conference on Image Processing, ICIP, vol. 1, p. I9014 (2005)Google Scholar
  34. 34.
    Zhang, X., Burger, M., Bresson, X., Osher, S.: Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM J. Imaging Sci. 3(3), 253–276 (2010)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Couzinie-Devy, F., Sun, J., Alahari, K., Ponce, J.: Learning to estimate and remove non-uniform image blur. In: CVPR (2013)Google Scholar
  36. 36.
    Favaro, P., Soatto, S.: A variational approach to scene reconstruction and image segmentation from motion-blur cues. In: CVPR (2004)Google Scholar
  37. 37.
    Kang, S., Choung, Y., Paik, J.: Segmentation-based image restoration for multiple moving objects with different motions. In: ICIP, pp. 376–380 (1999)Google Scholar
  38. 38.
    Kang, S., Min, J., Paik, J.: Segmentation-based spatially adaptive motion blur removal and its application to surveillance systems. In: ICIP, pp. 245–248 (2001)Google Scholar
  39. 39.
    McGuire, M., Hennessy, P, Bukowski, M., Osman, B.: A reconstruction filter for plausible motion blur (2012)Google Scholar
  40. 40.
    Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Osher, Stanley, Sethian, James A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Kass, K., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)zbMATHGoogle Scholar
  43. 43.
    Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Bracewell, R.: Two-Dimensional Imaging. Prentice-Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  45. 45.
    Moghaddam, M., Jamzad, M.: Motion blur identification in noisy motion blur identification in noisy images using fuzzy sets, In: Proceedings of the 5th IEEE International Symposium on Signal Processing and Information Technology, pp. 862–866 (2005)Google Scholar
  46. 46.
    McCormick, W.P., Lyons, N.I., Hutcheson, K.: Distributional properties of Jaccard’s index of similarity. Commun. Stat. Theory Methods 21, 51–68 (1992)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsDefence Institute of Advanced Technology (DIAT)PuneIndia
  2. 2.Centre for Airborne Systems (CABS)BangaloreIndia

Personalised recommendations