Advertisement

A Bayesian grouplet transform

  • Lotfi ChaariEmail author
Original Paper
  • 9 Downloads

Abstract

In the signal processing literature, wavelet transforms have been widely used for compression, restoration or texture processing. In this sense, grouplet transforms have been proposed to account for the geometrical image regularities. A grouplet transform (basis or frame) is based on an a priori fixed association field that groups image coefficients according to geometrical considerations. In this paper, we propose a method for estimating this association field in a Bayesian way. The resulting association field is therefore adaptive to the processed image content. A hierarchical Bayesian model is proposed and the inference is conducted using a Markov Chain Monte Carlo (MCMC) algorithm. The proposed method is tested on standard images in terms of association field quality and quantitative properties of the obtained wavelet coefficients. Specifically, the proposed method provides coefficients with low correlation level, and for which the highest level of energy is concentrated within the 20% most significant. These promising results confirm the potential of the proposed method for several image processing applications such as compression, denoising or restoration.

Keywords

Grouplet Wavelets Bayesian models MCMC 

Notes

References

  1. 1.
    Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  2. 2.
    Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)CrossRefGoogle Scholar
  3. 3.
    Chaux, C., Duval, L., Pesquet, J.-C.: Image analysis using a dual-tree m-band wavelet transform. IEEE Trans. Image Process. 15(8), 2397–2412 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Li, B., Yang, R., Jiang, H.: Remote-sensing image compression using two-dimensional oriented wavelet transform. IEEE Trans. Geosci. Remote Sens. 49(1), 236–250 (2011)CrossRefGoogle Scholar
  5. 5.
    Cheng, J., Liu, H., Liu, T., Wang, F., Li, H.: Remote sensing image fusion via wavelet transform and sparse representation. J. Photogramm. Remote Sens. 104, 158–173 (2015)CrossRefGoogle Scholar
  6. 6.
    Hostalkova, E., Vysata, O., Prochazka, A.: Multi-dimensional biomedical image de-noising using Haar transform. In: 2007 15th International Conference on Digital Signal Processing, pp. 175–178 (2007)Google Scholar
  7. 7.
    Chaari, L., Pesquet, J.-C., Benazza-Benyahia, A., Ciuciu, P.: A wavelet-based regularized reconstruction algorithm for SENSE parallel MRI with applications to neuroimaging. Med. Image Anal. 15(2), 185–201 (2011)CrossRefGoogle Scholar
  8. 8.
    Jerhotova, E., Svihlik, J., Prochazka, A.: Biomedical image volumes denoising via the wavelet transform. In: Gargiulo G.D., McEwan, A. (eds.) Applied Biomedical Engineering, IntechOpen, Rijeka, Ch. 19 (2011)Google Scholar
  9. 9.
    Li, H., Wang, L.: Palmprint recognition using dual-tree complex wavelet transform and compressed sensing. In: International Conference on Measurement, Information and Control, Vol. 2, pp. 563–567 (2012)Google Scholar
  10. 10.
    Hou, Y., Zhang, Y.: Effective hyperspectral image block compressed sensing using three-dimensional wavelet transform. In: IEEE Geoscience and Remote Sensing Symposium, Quebec, Canada, pp. 2973 – 2976 (2014)Google Scholar
  11. 11.
    Chang, C.-L., Girod, B.: Direction-adaptive discrete wavelet transform for image compression. IEEE Trans. Image Process. 16(5), 1289–1302 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kaaniche, M., Benazza-Benyahia, A., Pesquet, J. C., Pesquet-Popescu, B.: Lifting schemes for joint coding of stereoscopic pairs of satellite images. In: European Signal Processing Conference, Poznan, Poland, pp. 980 – 984 (2007)Google Scholar
  13. 13.
    Kaaniche, M., Pesquet-Popescu, B., Benazza-Benyahia, A., Pesquet, J.-C.: Adaptive lifting scheme with sparse criteria for image coding. EURASIP J. Adv. Signal Process. 2012(1), 10 (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Do, M., Vetterli, M.: Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models. IEEE Trans. Multimedia. 4(4), 517–527 (2002)CrossRefGoogle Scholar
  15. 15.
    Peyré, G.: Texture synthesis with grouplets. IEEE Trans Pattern Anal Mach Intell. 32(4), 733–746 (2004)CrossRefGoogle Scholar
  16. 16.
    Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Banham, M.R., Katsaggelos, A.K.: Spatially adaptive wavelet-based multiscale image restoration. IEEE Trans. Image Process. 5(4), 619–634 (1996)CrossRefGoogle Scholar
  18. 18.
    Mallat, S.: Geometrical grouplets. Appl. Comput. Harm. Anal. 26(2), 161–180 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Field, D.J., Hayes, A., Hess, R.: Contour integration by the human visual system: Evidence for a local association field. Vis. Res. 22(2), 173–193 (1993)CrossRefGoogle Scholar
  20. 20.
    Wei, D., Li, Y.: Reconstruction of multidimensional bandlimited signals from multichannel samples in the linear canonical transform domain. IET Signal Process. 8(6), 647–657 (2014)CrossRefGoogle Scholar
  21. 21.
    Wei, D., Li, Y.-M.: Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Peyr, G.: Texture synthesis with grouplets. IEEE Trans. Pattern Anal. Mach. Intell. 32, 733–746 (2009)CrossRefGoogle Scholar
  23. 23.
    Jingwen, Y., Zhenguo, Y., Tingting, X., Huimin, Z.: An algorithm for tight frame grouplet to compute association fields, in: Z.Yao, K. Xiangwei, D. T. (Eds.), Image and Graphics, Springer International Publishing, Cham, pp. 187–196 (2017)Google Scholar
  24. 24.
    Huerta, G.: Multivariate bayes wavelet shrinkage and applications. J. Appl. Stat. 32(5), 529–542 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Chaari, L., Tourneret, J.-Y., Chaux, C., Batatia, H.: A Hamiltonian Monte Carlo method for non-smooth energy sampling. IEEE Trans. Signal Process. 64(21), 5585–5594 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Robert, C., Castella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)CrossRefGoogle Scholar
  27. 27.
    Starck, J.-L., Candes, E.J., Donoho, D.L.: The curvelet transform for image denoising. IEEE Trans. Image Process. 11(6), 670–684 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process Maga. 22(6), 123–151 (2005)CrossRefGoogle Scholar
  29. 29.
    Candès, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30(3), 784–842 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Caiy, J.F., Jiz, H., Liuy, C., Shenz, Z.: High-quality curvelet-based motion deblurring from an image pair. In: IEEE Conference on Computer Vision and Pattern Recognition pp. 1566–1573 (2009)Google Scholar
  31. 31.
    Chaux, C., Combettes, P., Pesquet, J.-C., Wajs, V.R.: A variational formulation for frame-based inverse problems. Inverse Probl. 23(4), 1495–1518 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Chaari, L., Pesquet, J.-C., Tourneret, J.-Y., Ciuciu, P., Benazza-Benyahia, A.: A hierarchical Bayesian model for frame representation. IEEE Trans. Signal Process. 18(11), 5560–5571 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.MIRACL laboratoryUniversity of SfaxSfaxTunisia
  2. 2.IRIT - INP-ENSEEIHTUniversity of ToulouseToulouseFrance

Personalised recommendations