Advertisement

A new CFAR algorithm based on variable window for ship target detection in SAR images

  • Shiyuan ChenEmail author
  • Xiaojiang Li
Original Paper
  • 13 Downloads

Abstract

Target detection in the multiscale situation where there exit multiple ship targets with different sizes is a challenging task due to the mismatch of the sizes of ship targets and fixed windows. A new constant false alarm rate (CFAR) algorithm based on variable window for ship target detection in SAR images is proposed. First, the multiscale local contrast measure is introduced to estimate the ship target size without any prior knowledge about ships. Second, the size of neighborhood area is adaptively set and a transform algorithm is designed to enhance the contrast between targets and background. Finally, CFAR detection is implemented by adopting variable window to gain the accurate ship targets. Experimental results indicate that the proposed algorithm has better performance compared with other CFAR detection algorithms.

Keywords

Constant false alarm rate (CFAR) Ship target detection Variable window Synthetic aperture radar (SAR) 

Notes

References

  1. 1.
    Dong, L., Wang, B., Zhao, M., et al.: Robust infrared maritime target detection based on visual attention and spatiotemporal filtering. IEEE Trans. Geosci. Remote Sens. 55(5), 3037–3050 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, Y., Zhang, Y., Li, W., et al.: Marine wireless big data: efficient transmission, related applications, and challenges. IEEE Wirel. Commun. 25(1), 19–25 (2018)CrossRefGoogle Scholar
  3. 3.
    Wang, X., Chen, C.: A fast line-scanning-based detection algorithm for real-time SAR ship detection. Signal Image Video Process. 9(8), 1975–1982 (2015)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Chen, C.: Adaptive ship detection in SAR images using variance WIE-based method. Signal Image Video Process. 10(7), 1219–1224 (2016)CrossRefGoogle Scholar
  5. 5.
    Yu, W., Wang, Y., Liu, H., et al.: Superpixel-based CFAR target detection for high-resolution SAR images. IEEE Geosci. Remote Sens. Lett. 13(5), 730–734 (2016)CrossRefGoogle Scholar
  6. 6.
    Dai, H., Du, L., Wang, Y., et al.: A modified CFAR algorithm based on object proposals for ship target detection in SAR Images. IEEE Geosci. Remote Sens. Lett. 13(12), 1925–1929 (2016)CrossRefGoogle Scholar
  7. 7.
    Hwang, S., Ouchi, K.: On a novel approach using MLCC and CFAR for the improvement of ship detection by synthetic aperture radar. IEEE Geosci. Remote Sens. Lett. 7(2), 391–395 (2010)CrossRefGoogle Scholar
  8. 8.
    Gao, G., Liu, L., Zhao, L., et al.: An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 47(6), 1685–1697 (2009)CrossRefGoogle Scholar
  9. 9.
    Lombardo, P., Sciotti, M.: Segmentation-based technique for ship detection in SAR images. IEEE Proc. Radar Sonar Navig. 148(3), 147–159 (2001)CrossRefGoogle Scholar
  10. 10.
    Smith, M., Varshney, P.: Intelligent CFAR processor based on data variability. IEEE Trans. Aerosp. Electron. Syst. 36(3), 837–847 (2000)CrossRefGoogle Scholar
  11. 11.
    Blake, S.: OS-CFAR theory for multiple targets and nonuniform clutter. IEEE Trans. Aerosp. Electron. Syst. 24(6), 785–790 (1988)CrossRefGoogle Scholar
  12. 12.
    Ai, J., Qi, X., Yu, W., et al.: A new CFAR ship detection algorithm based on 2-D joint log-normal distribution in SAR Images. IEEE Geosci. Remote Sens. Lett. 7(4), 806–810 (2010)CrossRefGoogle Scholar
  13. 13.
    Wang, C., Jiang, S., Zhang, H., et al.: Ship detection for high-resolution SAR images based on feature analysis. IEEE Geosci. Remote Sens. Lett. 11(1), 119–123 (2013)CrossRefGoogle Scholar
  14. 14.
    Leng, X., Ji, K., Yang, K., et al.: A bilateral CFAR algorithm for ship detection in SAR images. IEEE Geosci. Remote Sens. Lett. 12(7), 1536–1540 (2015)CrossRefGoogle Scholar
  15. 15.
    Wang, C., Bi, F., Zhang, W., et al.: An intensity-space domain CFAR method for ship detection in HR SAR images. IEEE Geosci. Remote Sens. Lett. 14(4), 529–533 (2017)CrossRefGoogle Scholar
  16. 16.
    Chen, C., Li, H., Wei, Y., et al.: A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens. 52(1), 574–581 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, X., Chen, C.: Ship detection for complex back-ground SAR images based on a multiscale variance weighted image entropy method. IEEE Geosci. Remote Sens. Lett. 14(2), 184–187 (2017)CrossRefGoogle Scholar
  18. 18.
    Ji, Y., Zhang, J., Meng, J., et al.: A new CFAR ship target detection method in SAR imagery. Acta Oceanol. Sin. 29(1), 12–16 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Space Engineering UniversityBeijingChina

Personalised recommendations