Reconstruction of low-rank jointly sparse signals from multiple measurement vectors

  • Mehrrad Mehrkam
  • Mohammad Ali TinatiEmail author
  • Tohid Yousefi Rezaii
Original Paper


The multiple measurement vectors problem approximates a set of signals sharing a common sparsity pattern simultaneously, using different linear combinations of those signals obtained through a sensing matrix. In a situation where the signal matrix has full row-rank, MUltiple SIgnal Classification (MUSIC) algorithm guarantees to recover the jointly sparse signals, but for the rank-defective case, the MUSIC performance is voided. To address such a rank deficient case, our proposed method, line search low-rank jointly sparse signals (LS-LRJSS), provides a geometric analysis of the problem by characterizing the linear dependence of the measurements with the linear coefficients that permit the reconstruction of each point from its neighbors. Moreover, a subspace analysis has been done on a Grassmann manifold to obtain the subspace that the signal matrix belongs to. Several numerical experiments evidence that the proposed method is more accurate and less time-consuming compared to existing approaches especially wherever the sparsity level of the signals increases or the number of measurement vectors decreases.


Compressive sensing Multiple measurement vectors Joint sparsity Rank deficiency 


  1. 1.
    Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Couvreur, C., Bresler, Y.: On the optimality of the backward greedy algorithm for the subset selection problem. SIAM J. Matrix Anal. Appl. 21(3), 797–808 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jung, H., Sung, K., Nayak, K.S., Kim, E.Y., Ye, J.C.: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn. Reson. Med. 61(1), 103–116 (2009)CrossRefGoogle Scholar
  5. 5.
    Gorodnitsky, I.F., George, J.S., Rao, B.D.: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol. 95(4), 231–251 (1995)CrossRefGoogle Scholar
  6. 6.
    Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Foucart, S., Rauhut, H.: A mathematical introduction to compressive sensing (no. 3). Basel, Birkhäuser Basel (2013)CrossRefGoogle Scholar
  8. 8.
    Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via l 1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)CrossRefGoogle Scholar
  12. 12.
    Ji, S., Xue, Y., Carin, L.: Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Lee, O., Kim, J.M., Bresler, Y., Ye, J.C.: Compressive diffuse optical tomography: noniterative exact reconstruction using joint sparsity. IEEE Trans. Med. Imaging 30(5), 1129–1142 (2011)CrossRefGoogle Scholar
  14. 14.
    Bilik, I.: Spatial compressive sensing for direction-of-arrival estimation of multiple sources using dynamic sensor arrays. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1754–1769 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Chen, J., Huo, X.: Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)CrossRefGoogle Scholar
  16. 16.
    Tropp, J.A., Gilbert, A.C., Strauss, M.J.: Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86(3), 572–588 (2006)CrossRefGoogle Scholar
  17. 17.
    Blanchard, J.D., Cermak, M., Hanle, D., Jing, Y.: Greedy algorithms for joint sparse recovery. IEEE Trans. Signal Process. 62(7), 1694–1704 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tropp, J.A.: Algorithms for simultaneous sparse approximation. Part II: convex relaxation. Signal Process. 86(3), 589–602 (2006)CrossRefGoogle Scholar
  19. 19.
    Kreutz-Delgado, K., Rao, B.D.: Measures and algorithms for best basis selection, In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 1881–1884, IEEE (1998)Google Scholar
  20. 20.
    Zhang, J.A., Chen, Z., Cheng, P., Huang, X.: Multiple-measurement vector based implementation for single-measurement vector sparse Bayesian learning with reduced complexity. Signal Process. 118, 153–158 (2016)CrossRefGoogle Scholar
  21. 21.
    Makhzani, A., Valaee, S.: Reconstruction of jointly sparse signals using iterative hard thresholding. In: IEEE International Conference on Communications (ICC), pp. 3564–3568: IEEE (2012)Google Scholar
  22. 22.
    Foucart, S.: Recovering jointly sparse vectors via hard thresholding pursuit. In: Proceeding Sampling Theory and Applications (SampTA)] (2011)Google Scholar
  23. 23.
    Wipf, D., Nagarajan, S.: Iterative reweighted l 1 and l 2 methods for finding sparse solutions. IEEE J. Sel. Top. Signal Process. 4(2), 317–329 (2010)CrossRefGoogle Scholar
  24. 24.
    Mishali, M., Eldar, Y.C.: Reduce and boost: Recovering arbitrary sets of jointly sparse vectors. IEEE Trans. Signal Process. 56(10), 4692–4702 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gribonval, R., Rauhut, H., Schnass, K., Vandergheynst, P.: Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms. J. Fourier Anal Appl. 14(5), 655–687 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Feng, P., Bresler, Y.: Spectrum-blind minimum-rate sampling and reconstruction of multiband signals. In: IEEE International Conference on Conference Proceedings on Acoustics, Speech, and Signal Processing, ICASSP-96, vol. 3, pp. 1688–1691: IEEE (1996)Google Scholar
  27. 27.
    Lee, K., Bresler, Y., Junge, M.: Subspace methods for joint sparse recovery. IEEE Trans. Inf. Theory 58(6), 3613–3641 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Davies, M.E., Eldar, Y.C.: Rank awareness in joint sparse recovery. IEEE Trans. Inf. Theory 58(2), 1135–1146 (2012)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kim, J.M., Lee, O.K., Ye, J.C.: Compressive MUSIC: revisiting the link between compressive sensing and array signal processing. IEEE Trans. Inf. Theory 58(1), 278–301 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  31. 31.
    Peng, J., Luo, T.: Sparse matrix transform-based linear discriminant analysis for hyperspectral image classification. SIViP 10(4), 761–768 (2016)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, H., Celik, T.: Sparse representation-based hyperspectral image classification. SIViP 12(5), 1009–1017 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Mehrrad Mehrkam
    • 1
  • Mohammad Ali Tinati
    • 1
    Email author
  • Tohid Yousefi Rezaii
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of TabrizTabrizIran

Personalised recommendations