Signal, Image and Video Processing

, Volume 13, Issue 3, pp 551–556 | Cite as

Optimum FrFT domain cyclostationarity based adaptive beamforming

  • Muhammad Ishtiaq AhmadEmail author
Original Paper


Essentially, the observed signal of interest is buried under the clutter due to high backscatters in radar or sonar applications. The presence of colored-Gaussian stationary noise (clutter) degrades the traditional beamformers, significantly. A new adaptive beamforming technique is presented here based on the numerical selection of the fractional order. The new method maximizes the fractional domain spectral kurtosis and optimum fractional Fourier domain cyclostationarity of the non-stationary linear chirp signal. This concentrates the desired chirp signal in the optimum time–frequency domain, rejects the clutter, and improves the minimization and convergence of the adaptive mean-squared error beamformer, greatly. Simulation results show that the new method performs well under low signal-to-noise ratio.


Beamforming Fractional Fourier transform Fractional moments Chirp signal 



The author would like to thank the editor and the anonymous referee for their valuable comments and suggestions that improved the clarity and quality of this manuscript.


  1. 1.
    Schleher, D.C.: Electronic Warfare in the Information Age. Artech House Inc, Norwood (1999)Google Scholar
  2. 2.
    Ahmad, M.I., Sardar, M.U., Ahmad, I.: Blind beamforming using fractional Fourier transform domain cyclostationarity. Signal Image Video Process. 12(2), 379–383 (2018)CrossRefGoogle Scholar
  3. 3.
    Krim, H., Viberg, M.: Two decades of array signal processing research: the parametric approach. IEEE Signal Process. Mag. 13(4), 67–94 (1996)CrossRefGoogle Scholar
  4. 4.
    Applebaum, S., Chapman, D.: Adaptive arrays with main beam constraints. IEEE Trans. Ant. Propag. 24(5), 650–662 (1976)CrossRefGoogle Scholar
  5. 5.
    Widrow, B., Mantey, P.E., Griffiths, L.J., Goode, B.B.: Adaptive antenna systems. IEEE Proc. 55(12), 2143–2159 (1967)CrossRefGoogle Scholar
  6. 6.
    Frost, O.L.: An algorithm for linearly constrained adaptive array processing. IEEE Proc. 60(8), 926–935 (1972)CrossRefGoogle Scholar
  7. 7.
    Capon, J.: High-resolution frequency-wavenumber spectrum analysis. IEEE Proc. 57(8), 1408–1418 (1969)CrossRefGoogle Scholar
  8. 8.
    Yetik, I.S., Nehorai, A.: Beamforming using the fractional Fourier transform. IEEE Trans. Signal Process. 51(6), 1663–1668 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Ahmad, M.I., Liu, Z., Xu, Y.: Order selection in fractional Fourier transform based beamforming. J. Syst. Eng. Electr. 21(3), 361–369 (2010)CrossRefGoogle Scholar
  10. 10.
    Benesty, J., Chen, J., Huang, Y., Dmochowski, J.: On microphone-array beamforming from a MIMO acoustic signal processing perspective. IEEE Trans. Audio Speech Lang. Process. 15(3), 1053–1065 (2007)CrossRefGoogle Scholar
  11. 11.
    Scott, L., Mulgrew, B.: Sparse LCMV beamformer design for suppression of ground clutter in airborne radar. IEEE Trans. Signal Process. 43(12), 2843–2851 (1995)CrossRefGoogle Scholar
  12. 12.
    Limpiti, T., Van Veen, B.D., Wakai, R.T.: Cortical patch basis model for spatially extended neural activity. IEEE Trans. Biomed Eng. 53(9), 1740–1754 (2006)CrossRefGoogle Scholar
  13. 13.
    Chen, R., Wang, Y.: Efficient detection of chirp signals based on the fourth-order origin moment of fractional spectrum. Circuit Syst. Signal Process. 33(5), 1585–1596 (2014)CrossRefGoogle Scholar
  14. 14.
    Guan, J., Chen, X.L., Huang, Y., He, Y.: Adaptive fractional Fourier transform-based detection algorithm for moving target in heavy sea clutter. IET Radar Sonar Navig. 6(5), 389–401 (2012)CrossRefGoogle Scholar
  15. 15.
    Shamsunder, S., Giannakis, G.B., Friedlander, B.: Estimating random amplitude polynomial phase signals: a cyclostationary approach. IEEE Trans. Signal Process. 43(2), 492–505 (1995)CrossRefGoogle Scholar
  16. 16.
    Gini, F., Montanari, M., Verrazzani, L.: Estimation of chirp radar signals in compound-Gaussian clutter: a cyclostationary approach. IEEE Trans. Signal Process. 48(4), 1029–1039 (2000)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kutay, A., Ozaktas, H.M., Ankan, O., Onural, L.: Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45(5), 1129–1143 (1997)CrossRefGoogle Scholar
  18. 18.
    Wei, D., Ran, Q.: Multiplicative filtering in the fractional Fourier domain. Signal Image Video Process. 7(3), 575–580 (2013)CrossRefGoogle Scholar
  19. 19.
    Ting, L.K., Cowan, C.F., Woods, R.F.: LMS coefficient filtering for time-varying chirped signals. IEEE Trans. Signal Process. 52(11), 3160–3169 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Antoni, J.: The spectral kurtosis: a useful tool for characterising nonstationary signals. Mech. Syst. Signal Process. 20(2), 282–307 (2006)CrossRefGoogle Scholar
  21. 21.
    Alieva, T., Bastiaans, M.J.: On fractional Fourier transform moments. IEEE Signal Process. Lett. 7(11), 320–323 (2000)CrossRefGoogle Scholar
  22. 22.
    Markhi, H.E., Haibala, O.M.M., Mrabti, F., Chargé, P., Zouak, M.: An improved cyclic beamforming method for signal DOA estimation. Signal Image Video Process. 1(3), 267–272 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong

Personalised recommendations