Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 3, pp 541–549 | Cite as

Deep feature extraction and its application for hailstorm detection in a large collection of radar images

  • Iksha Gurung
  • Chao PengEmail author
  • Manil Maskey
  • Rahul Ramachandran
Original Paper
  • 99 Downloads

Abstract

With the improvement of sensing and storing technologies, a large amount of weather data become available, and the data size will continue growing as radar imaging instruments continuously acquire data. In this work, we develop a deep convolutional neural network with a large collection of radar images as input to train and validate a classification model, and then we use the model to detect hailstorm events. This is interdisciplinary work between the disciplines of computer science and meteorology. We are primarily interested in what hailstorm features the network learns and how it learns as convolving into deeper iterations. The evaluation results show a high classification accuracy in comparison with existing hailstorm detection approaches. The proposed approach can also be used to detect other types of severe weather events with minimal efforts on variable or parameter changes.

Keywords

Hailstorm detection Convolutional neural network Deep feature extraction 

Notes

Acknowledgements

This research work was supported by NASA Grant NNM11AA01A. We thank Dr. Sundar A. Christopher, Professor of Atmospheric Science at UAH, for his insightful suggestions for this work. We thank Ms. Melinda Pullman who helped us organize the data from National Center for Environmental Information Storm Events Database. We thank the support of Department of Computer Science at UAH and the support of NASA.

References

  1. 1.
    National centers for environmental information. https://www.ncei.noaa.gov (2017)
  2. 2.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. CoRR. arXiv:1603.04467 (2016)
  3. 3.
    Auer Jr., A.H.: Hail recognition through the combined use of radar reflectivity and cloud-top temperatures. Mon. Weather Rev. 122(9), 2218–2221 (1994)CrossRefGoogle Scholar
  4. 4.
    Bauer-Messmer, B., Waldvogel, A.: Satellite data based detection and prediction of hail. Atmos. Res. 43(3), 217–231 (1997)CrossRefGoogle Scholar
  5. 5.
    Bracewell, R.N.: The Fourier Transform and its Applications. McGraw-Hill Series in Electrical Engineering, Networks and Systems, 2 rev. edn, p. c1986. McGraw-Hill, New York (1986)Google Scholar
  6. 6.
    Chen, M., Shi, X., Zhang, Y., Wu, D., Guizani, M.: Deep features learning for medical image analysis with convolutional autoencoder neural network. IEEE Trans. Big Data PP(99), 1–1 (2017)Google Scholar
  7. 7.
    Ferraro, R., Beauchamp, J., Cecil, D., Heymsfield, G.: A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (AMSU). Atmos. Res. 163(Supplement C), 24–35 (2015)CrossRefGoogle Scholar
  8. 8.
    Gerapetritis, H., Pelissier, J.M.: On the behavior of the critical success index. US Department of Commerce, National Oceanic and Atmospheric Administration, National Weather Service (2004)Google Scholar
  9. 9.
    Gryshkevych, S.: Conviz. https://github.com/grishasergei/conviz (2016)
  10. 10.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar
  11. 11.
    Herzmann, D., Arritt, R., Todey, D.: Iowa environmental mesonet. http://mesonet.agron.iastate.edu/request/coop/fe.phtml. Verified 27 Sept 2005. Iowa State University, Department of Agronomy, Ames, IA (2004)
  12. 12.
    Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage architecture for object recognition? In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, pp. 2146–2153 (2009)Google Scholar
  13. 13.
    Klein, B., Wolf, L., Afek, Y.: A dynamic convolutional layer for short range weather prediction. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4840–4848 (2015)Google Scholar
  14. 14.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc, Red Hook (2012)Google Scholar
  15. 15.
    Liu, Y., Racah, E., Prabhat, Correa, J., Khosrowshahi, A., Lavers, D., Kunkel, K., Wehner, M., Collins, W.D.: Application of deep convolutional neural networks for detecting extreme weather in climate datasets. CoRR. arXiv:1605.01156 (2016)
  16. 16.
    Marzban, C., Witt, A.: A bayesian neural network for severe-hail size prediction. Weather Forecast. 16(5), 600–610 (2001)CrossRefGoogle Scholar
  17. 17.
    Merino, A., López, L., Sánchez, J., García-Ortega, E., Cattani, E., Levizzani, V.: Daytime identification of summer hailstorm cells from msg data. Nat. Hazards Earth Syst. Sci. 14(4), 1017–1033 (2014)CrossRefGoogle Scholar
  18. 18.
    Mroz, K., Battaglia, A., Lang, T.J., Cecil, D.J., Tanelli, S., Tridon, F.: Hail-detection algorithm for the gpm core observatory satellite sensors. J. Appl. Meteorol. Climatol. 56(7), 1939–1957 (2017)CrossRefGoogle Scholar
  19. 19.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML’10. Omnipress, USA, pp. 807–814 (2010)Google Scholar
  20. 20.
    Ni, X., Liu, C., Cecil, D.J., Zhang, Q.: On the detection of hail using satellite passive microwave radiometers and precipitation radar. J. Appl. Meteorol. Climatol. 56(10), 2693–2709 (2017)CrossRefGoogle Scholar
  21. 21.
    Oceanic, N., Administration, A.: Goes-R cloud top temperature (2016). https://vlab.ncep.noaa.gov/web/goes-r-end-user-mission-readiness-project/cloud-top-temperature
  22. 22.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. CoRR. arXiv:1712.04621 (2017)
  24. 24.
    Poria, S., Cambria, E., Gelbukh, A.: Aspect extraction for opinion mining with a deep convolutional neural network. Knowl. Based Syst. 108(C), 42–49 (2016)CrossRefGoogle Scholar
  25. 25.
    Pradhan, R., Aygun, R., Maskey, M., Ramachandran, R., Cecil, D.: Tropical cyclone intensity estimation using a deep convolutional neural network. IEEE Trans. Image Process. PP(99), 1–1 (2017)zbMATHGoogle Scholar
  26. 26.
    Ravinder, A., Reddy, P.K., Prasad, N.: Detection of wavelengths for hail identification using satellite imagery of clouds. In: 2013 Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN). IEEE, pp. 205–211 (2013)Google Scholar
  27. 27.
    Sainath, T.N., Mohamed, A-r., Kingsbury, B., Ramabhadran, B.: Deep convolutional neural networks for LVCSR. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 8614–8618 (2013)Google Scholar
  28. 28.
    Schaefer, J.T.: The critical success index as an indicator of warning skill. Weather Forecast. 5(4), 570–575 (1990)CrossRefGoogle Scholar
  29. 29.
    Scherer, D., Müller, A., Behnke, S.: Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition, pp. 92–101. Springer, Berlin, Heidelberg (2010)Google Scholar
  30. 30.
    Shen, W., Wang, X., Wang, Y., Bai, X., Zhang, Z.: Deepcontour: a deep convolutional feature learned by positive-sharing loss for contour detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3982–3991 (2015).  https://doi.org/10.1109/CVPR.2015.7299024
  31. 31.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR. arXiv:1409.1556 (2014)
  32. 32.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Žibert, M.I., Žibert, J.: Monitoring and automatic detection of the cold-ring patterns atop deep convective clouds using meteosat data. Atmos. Res. 123, 281–292 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.National Aeronautics and Space Administration (NASA)HuntsvilleUSA

Personalised recommendations