Signal, Image and Video Processing

, Volume 13, Issue 3, pp 525–530 | Cite as

Blind screen content image quality measurement based on sparse feature learning

  • Wujie ZhouEmail author
  • Lu Yu
  • Yang Zhou
  • Weiwei Qiu
  • Jian Xiang
  • Zhinian Zhai
Original Paper


Recently, the perceived quality measurement of screen content images (SCIs) has become an active research topic. In this paper, a blind image quality measurement (IQM) metric for SCIs based on the learning of sparse features via dictionary learning is proposed. First, to extract the sparse features, histogram representations from multi-scale local gradient patterns are integrated to form a dictionary. Subsequently, using a pursuit algorithm, the sparse features of the distorted SCIs are efficiently coded by this dictionary. Finally, to obtain the final quality of the distorted SCIs, a machine learning algorithm is utilised to combine the sparse features into a final quality score. The results of extensive simulations conducted show that the proposed blind IQM metric consistently obtains competitive performance and is in line with human beings perceive.


Screen content images Sparse features Multi-scale local gradient patterns Quality measurement 



This work was supported by the National Natural Science Foundation of China (Grant Nos. 61502429, 61505176), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY18F020012), the Zhejiang Open Foundation of the Most Important Subjects, and the China Postdoctoral Science Foundation (Grant No. 2015M581932).


  1. 1.
    Zhu, W., Ding, W., Xu, J., Shi, Y., Yin, B.: Hash-based block matching for screen content coding. IEEE Trans. Multimedia 17(7), 935–944 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, S., Zhang, X., Liu, X., Zhang, J., Ma, S., Gao, W.: Utility-driven adaptive preprocessing for screen content video compression. IEEE Trans. Multimedia 19(3), 660–667 (2017)CrossRefGoogle Scholar
  3. 3.
    Chen, C.C., Peng, W.H.: Intra line copy for HEVC screen content coding. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1568–1579 (2017)CrossRefGoogle Scholar
  4. 4.
    Wang, S., Gu, K., Zhang, X., Lin, W., Zhang, L., Ma, S., Gao, W.: Subjective and objective quality assessment of compressed screen content images. IEEE J. Emerg. Sel. Top. Circuits Syst. 6(4), 532–543 (2016)CrossRefGoogle Scholar
  5. 5.
    Yang, H., Fang, Y., Yuan, Y., Lin, W.: Subjective quality evaluation of compressed digital compound images. J. Vis. Commun. Image Represent 26, 105–114 (2015)CrossRefGoogle Scholar
  6. 6.
    Yang, H., Fang, Y., Lin, W.: Perceptual quality assessment of screen content images. IEEE Trans. Image Process. 24(11), 4408–4421 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fang, Y., Yan, J., Liu, J., Wang, S., Li, Q., Guo, Z.: Objective quality assessment of screen content images by uncertainty weighting. IEEE Trans. Image Process. 26(4), 2016–2027 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gu, K., Wang, S., Yang, H., Lin, W., Zhai, G., Yang, X., Zhang, W.: Saliency-guided quality assessment of screen content images. IEEE Trans. Multimedia 18(6), 1098–1110 (2016)CrossRefGoogle Scholar
  9. 9.
    Ni, Z., Zeng, H., Ma, L., Hou, J., Chen, J., Ma, K.K.: A Gabor feature-based quality assessment model for the screen content images. IEEE Trans. Image Process. 27(9), 4516–4528 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ni, Z., Ma, L., Zeng, H., Chen, J., Cai, C., Ma, K.K.: ESIM: edge similarity for screen content image quality assessment. IEEE Trans. Image Process. 26(10), 4818–4831 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Zhang, Y., Chandler, D.M., Mou X.: Quality assessment of screen content images via convolutional-neural-network-based synthetic/natural segmentation. IEEE Trans. Image Process. (2018)
  12. 12.
    Gu, K., Zhai, G., Lin, W., Yang, X., Zhang, W.: Learning a blind quality evaluation engine of screen content images. Neurocomputing 196, 140–149 (2016)CrossRefGoogle Scholar
  13. 13.
    Qian, J., Tang, L., Jakhetiya, V., Xia, Z., Gu, K., Lu, H.: Towards efficient blind quality evaluation of screen content images based on edge-preserving filter. Electron. Lett. 53(9), 592–594 (2017)CrossRefGoogle Scholar
  14. 14.
    Gu, K., Zhou, J., Qiao, J.F., Zhai, G., Lin, W., Bovik, A.C.: No-reference quality assessment of screen content pictures. IEEE Trans. Image Process. 26(8), 4005–4018 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Min, X., Ma, K., Gu, K., Zhai, G., Wang, Z., Lin, W.: Unified blind quality assessment of compressed natural, graphic, and screen content images. IEEE Trans. Image Process. 26(11), 5462–5474 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fang, Y., Yan, J., Li, L., Wu, J., Lin, W.: No-reference quality assessment for screen content images with both local and global feature representation. IEEE Trans. Image Process. 27(4), 1600–1610 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wu, J., Li, H., Xia, Z., Xia, Z.: Screen content image quality assessment based on the most preferred structure feature. J. Electron. Imaging 27(3), 033025 (2018)CrossRefGoogle Scholar
  18. 18.
    Lu, N., Li, G.: Blind quality assessment for screen content images by orientation selectivity mechanism. Signal Process. 145, 225–232 (2018)CrossRefGoogle Scholar
  19. 19.
    Mittal, A., Soundararjan, R., Bovik, A.C.: Making a completely blind image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhang, L., Zhang, L., Bovik, A.C.: A feature-enriched completely blind image quality evaluator. IEEE Trans. Image Process. 24(8), 2579–2591 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xue, W., Mou, X., Zhang, L., Bovik, A.C., Feng, X.: Blind image quality assessment using joint statistics of gradient magnitude and Laplacian features. IEEE Trans. Image Process. 23(11), 4850–4862 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhou, W., Yu, L., Qiu, W., Zhou, Y., Wu, M.-W.: Local gradient patterns (LGP): an effective local-statistical-feature extraction scheme for no-reference image quality assessment. Inform. Sci. 397–398, 1–14 (2017)CrossRefGoogle Scholar
  23. 23.
    Mahmoudpour, S., Kim, M.: No-reference image quality assessment in complex-shearlet domain. Signal Image Video Process. 10(8), 1–8 (2016)CrossRefGoogle Scholar
  24. 24.
    Alaei, A., Raveaux, R., Conte, D.: Image quality assessment based on regions of interest. Signal Image Video Process. 11(4), 673–680 (2017)CrossRefGoogle Scholar
  25. 25.
    Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. Signal Image Video Process. 12(2), 355–362 (2018)CrossRefGoogle Scholar
  26. 26.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  27. 27.
    Ojala, T., Pietikinen, M., Menp, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  28. 28.
    Yang, A.Y., Zhou, Z., Balasubramanian, A.G., Sastry, S.S., Ma, Y.: Fast \(l_1\)-Minimization algorithms for robust face recognition. IEEE Trans. Image Process. 22(8), 3234–3246 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Wujie Zhou
    • 1
    • 2
    Email author
  • Lu Yu
    • 2
  • Yang Zhou
    • 1
  • Weiwei Qiu
    • 1
  • Jian Xiang
    • 1
  • Zhinian Zhai
    • 1
  1. 1.School of Information and Electronic EngineeringZhejiang University of Science and TechnologyHangzhouChina
  2. 2.Institute of Information and Communication EngineeringZhejiang UniversityHangzhouChina

Personalised recommendations