Advertisement

Signal, Image and Video Processing

, Volume 13, Issue 3, pp 491–498 | Cite as

Local binary patterns for noise-tolerant sEMG classification

  • Sayed Mohamad Tabatabaei
  • Abdolah ChalechaleEmail author
Original Paper
  • 79 Downloads

Abstract

One-dimensional local binary pattern (1DLBP) has been recently specialized for feature extraction from different types of 1D biological signals. One of the major drawbacks of using 1DLBP, which unavoidably results in classification accuracy reduction, is its noise sensitivity due to the thresholding mechanism. To overcome this deficiency, we have proposed a new one-dimensional noise-tolerant binary pattern (1DNTBP) in this paper. In contrast to 1DLBP, our proposed operator has been defined to use information of a sampling interval as a threshold instead of using central sample value. In order to evaluate 1DNTBP, we applied our proposed feature extraction method on sEMG for basic hand movement dataset. Additionally, a feature selection stage has been considered to perform further noise removal and insignificant patterns reduction process. Hereafter, a variety of classifiers have been tested with the aim of categorizing the selected features. Experimental results indicate that not only does the proposed operator provide noise tolerance, but also it works adaptably well with various classifiers causing it to be a universal operator, sufficiently appropriate to be applied to different applications.

Keywords

Local binary pattern One-dimensional local binary pattern Noise-tolerant local binary pattern Electromyography 

References

  1. 1.
    Al-Assaf, Y.: Surface myoelectric signal analysis: dynamic approaches for change detection and classification. IEEE Trans. Biomed. Eng. 53(11), 2248–2256 (2006)CrossRefGoogle Scholar
  2. 2.
    Alahmadi, A., Hussain, M., Aboalsamh, H., Muhammad, G., Bebis, G., Mathkour, H.: Passive detection of image forgery using DCT and local binary pattern. Signal Image Video Process. 11(1), 81–88 (2017)CrossRefGoogle Scholar
  3. 3.
    Bingham, E., Kaski, S., Laaksonen, J., Lampinen, J.: Advances in Independent Component Analysis and Learning Machines. Academic Press, Cambridge (2015)Google Scholar
  4. 4.
    Chatlani, N., Soraghan, J.J.: Local binary patterns for 1-d signal processing. In: Signal Processing Conference, 2010 18th European, pp. 95–99. IEEE (2010)Google Scholar
  5. 5.
    Ertuğrul, Ö.F., Kaya, Y., Tekin, R.: A novel approach for SEMG signal classification with adaptive local binary patterns. Med. Biol. Eng. Comput. 54(7), 1137–1146 (2016)CrossRefGoogle Scholar
  6. 6.
    Ertuğrul, Ö.F., Kaya, Y., Tekin, R., Almalı, M.N.: Detection of Parkinson’s disease by shifted one dimensional local binary patterns from gait. Expert Syst. Appl. 56, 156–163 (2016)CrossRefGoogle Scholar
  7. 7.
    Fariman, H.J., Ahmad, S.A., Marhaban, M.H., Ghasab, M.A., Chappell, P.H.: Hand movements classification for myoelectric control system using adaptive resonance theory. Australas. Phys. Eng. Sci. Med. 39(1), 85–102 (2016)CrossRefGoogle Scholar
  8. 8.
    Hafiane, A., Seetharaman, G., Zavidovique, B.: Median binary pattern for textures classification. In: International Conference Image Analysis and Recognition, pp. 387–398. Springer (2007)Google Scholar
  9. 9.
    Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)CrossRefGoogle Scholar
  10. 10.
    Houam, L., Hafiane, A., Boukrouche, A., Lespessailles, E., Jennane, R.: One dimensional local binary pattern for bone texture characterization. Pattern Anal. Appl. 17(1), 179–193 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Jin, H., Liu, Q., Lu, H., Tong, X.: Face detection using improved LBP under bayesian framework. In: Third International Conference on Image and Graphics (ICIG’04), pp. 306–309. IEEE (2004)Google Scholar
  12. 12.
    Kaya, Y., Ertuğrul, Ö.F.: Gender classification from facial images using gray relational analysis with novel local binary pattern descriptors. Signal Image Video Process. 11(4), 769–776 (2017)CrossRefGoogle Scholar
  13. 13.
    Kaya, Y., Uyar, M., Tekin, R., Yıldırım, S.: 1D-local binary pattern based feature extraction for classification of epileptic EEG signals. Appl. Math. Comput. 243, 209–219 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kendell, C., Lemaire, E.D., Losier, Y., Wilson, A., Chan, A., Hudgins, B.: A novel approach to surface electromyography: an exploratory study of electrode-pair selection based on signal characteristics. J. Neuroeng. Rehabil. 9(1), 24 (2012)CrossRefGoogle Scholar
  15. 15.
    Khushaba, R.N., Al-Timemy, A., Kodagoda, S., Nazarpour, K.: Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst. Appl. 61, 154–161 (2016)CrossRefGoogle Scholar
  16. 16.
    Kumar, T.S., Kanhangad, V., Pachori, R.B.: Classification of seizure and seizure-free EEG signals using local binary patterns. Biomed. Signal Process. Control 15, 33–40 (2015)Google Scholar
  17. 17.
    Liu, L., Fieguth, P., Guo, Y., Wang, X., Pietikäinen, M.: Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit. 62, 135–160 (2017)Google Scholar
  18. 18.
    Lumini, L.N.S.B.A.: Selecting the best performing rotation invariant patterns in local binary/ternary patterns. In: International Conference on IP, Computer Vision, and Pattern Recognition (2010)Google Scholar
  19. 19.
    Makaremi, M., Razmjooy, N., Ramezani, M.: A new method for detecting texture defects based on modified local binary pattern. Signal Image Video Process. 12(7), 1395–1401 (2018)CrossRefGoogle Scholar
  20. 20.
    Mokhlesabadifarahani, B., Gunjan, V.K.: EMG Signals Characterization in Three States of Contraction by Fuzzy Network and Feature Extraction. Springer, Berlin (2015)CrossRefGoogle Scholar
  21. 21.
    Nanni, L., Lumini, A., Brahnam, S.: Local binary patterns variants as texture descriptors for medical image analysis. Artif. Intell. Med. 49(2), 117–125 (2010)CrossRefzbMATHGoogle Scholar
  22. 22.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefzbMATHGoogle Scholar
  23. 23.
    Phinyomark, A., Limsakul, C., Phukpattaranont, P.: Application of wavelet analysis in emg feature extraction for pattern classification. Meas. Sci. Rev. 11(2), 45–52 (2011)CrossRefGoogle Scholar
  24. 24.
    Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selection for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012)CrossRefGoogle Scholar
  25. 25.
    Pietikäinen, M., Hadid, A., Zhao, G., Ahonen, T.: Computer Vision Using Local Binary Patterns, vol. 40. Springer, Berlin (2011)Google Scholar
  26. 26.
    Ren, J., Jiang, X., Yuan, J.: Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans. Image Process. 22(10), 4049–4060 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sapsanis, C., Georgoulas, G., Tzes, A., Lymberopoulos, D.: Improving EMG based classification of basic hand movements using EMD. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5754–5757. IEEE (2013)Google Scholar
  28. 28.
    Sapsanis, C., Tzes, A.: semg for basic hand movement dataset (2017). https://archive.ics.uci.edu/ml/datasets/sEMG+for+Basic+Hand+movements. Accessed 2 Jan 2017
  29. 29.
    Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Tkach, D., Huang, H., Kuiken, T.A.: Study of stability of time-domain features for electromyographic pattern recognition. J. Neuroeng. Rehabil. 7(1), 21 (2010)CrossRefGoogle Scholar
  31. 31.
    Zecca, M., Micera, S., Carrozza, M.C., Dario, P.: Control of multifunctional prosthetic hands by processing the electromyographic signal. Crit. Rev. Biomed. Eng. 30(4–6), 459–485 (2002)CrossRefGoogle Scholar
  32. 32.
    Zhao, Y., Jia, W., Hu, R.X., Min, H.: Completed robust local binary pattern for texture classification. Neurocomputing 106, 68–76 (2013)CrossRefGoogle Scholar
  33. 33.
    Zhu, Q., Chatlani, N., Soraghan, J.J.: 1-D local binary patterns based VAD used inhmm-based improved speech recognition. In: 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO), pp. 1633–1637. IEEE (2012)Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Engineering DepartmentRAZI UniversityKermanshahIran

Personalised recommendations